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Obs 𝑦𝑖(𝑡) = 𝑓(𝑡; 𝜃𝑖) + 𝜀 for a knownmechanistic model 𝑓 and 1 ≤ 𝑖 ≤ 𝑀 patients.

𝑓(𝑡; 𝜃𝑖) = 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)𝐴𝑏0,𝑖 + 𝜙𝑆,𝑖
𝑒−𝛿𝑆,𝑖(𝑡−𝑡0) − 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)

𝛿𝐴𝑏,𝑖 − 𝛿𝑆,𝑖
+ 𝜙𝐿

𝑒−𝛿𝐿(𝑡−𝑡0) − 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)

𝛿𝐴𝑏,𝑖 − 𝛿𝐿
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Latent trajectories 𝑓(𝑡; 𝜃𝑖) with unkwown parameters 𝜃𝑖 = 𝜃 + 𝑏𝑖 (mixed-effects)
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We want to say something about the population mean behavior characterized by 𝜃.
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While being able to incorporate prior information about 𝜃 and {𝑏𝑖}𝑀𝑖=1,
leading to principled uncertainty quantification.
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Can we still do that when 𝑓 is partially known, or even unknown?

𝑓𝑖(𝑡) = 𝜇0(𝑡) + 𝑔𝑖(𝑡) ⟺ learn functions not parameters
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Can we still do that when 𝑓 is partially known, or even unknown?

𝑓𝑖(𝑡) = 𝜇0(𝑡) + 𝑔𝑖(𝑡) ⟺ learn functions not parameters

Answer: yes (hopefully ), using Gaussian Processes
2



Outline

1 Gaussian Processes in a nutshell

2 Analogies, extensions

3 Application: learning partially known vector fields from heterogeneous data

3



Gaussian processes (GPs)

A GP is a stochastic process acting as a prior distribution over function spaces

𝑓(𝑥) ∼ 𝒢𝒫(𝑚𝜃𝑚(𝑥), 𝑘𝜃𝑘(𝑥, 𝑥
′))

𝑚𝜃𝑚(𝑥) = 𝔼[𝑓(𝑥)] is themean function, 𝑘𝜃𝑘(𝑥, 𝑥
′) = Cov[𝑓(𝑥), 𝑓(𝑥′)] the kernel.

(Hyper-)Parameterized by (𝜃𝑚, 𝜃𝑘).

GPs generalize the multivariate normal distribution to infinite-dimensional spaces
For any collection of function values f = [𝑓(𝑥1), … , 𝑓(𝑥𝑛)]

f ∼ 𝒩 (m,K)

Withm = [𝑚𝜃𝑚(𝑥1), … ,𝑚𝜃𝑚(𝑥𝑛)] and K = (𝑘𝜃𝑘(𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑛
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Example - Radial Basis Function Kernel

Cov[𝑓(𝑥), 𝑓(𝑥′)] ∶= 𝑘𝜃𝑘(𝑥, 𝑥
′) = 𝜎amp exp 􏿶−

(𝑥 − 𝑥′)2
2ℓ2 􏿹 𝜃𝑘 = (𝜎amp, ℓ)
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𝜎amp handles the variance magnitude and ℓ how fast correlation decreases
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Animations are always better to understand
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Nice thing about GPs: posterior predictive available in closed-form
Let𝒟 = (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1 = (X, y) with 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀. For a new function value 𝑓∗ located at
𝑥∗,

𝑓∗|y ∼ 𝒩 (𝑚𝜃𝑚(𝑥∗|𝒟 ), 𝜎2(𝑥∗|𝒟 ))
𝑚(𝑥∗|𝒟 ) = 𝑚𝜃𝑚(𝑥∗) + 𝑘𝜃𝑘(𝑥∗, X)

𝑇(K + 𝜎2noise𝐼)−1(y − m)
𝜎2(𝑥∗|𝒟 ) = 𝑘𝜃𝑘(𝑥∗, 𝑥∗) − 𝑘𝜃𝑘(𝑥∗, X)

𝑇(K + 𝜎2noise𝐼)−1𝑘𝜃𝑘(X, 𝑥∗)

Where 𝑘𝜃𝑘(𝑥∗, X)
𝑇 = [𝑘𝜃𝑘(𝑥∗, 𝑥1), … , 𝑘𝜃𝑘(𝑥∗, 𝑥𝑛)].

Hyperparameters (𝜃𝑚, 𝜃𝑘, 𝜎noise) learned through marginal likelihood maximization.

For a zero-mean prior𝑚, the posterior mean can be written as

𝑚(𝑥∗|𝒟 ) =
𝑛
􏾜
𝑖=1
𝛼𝑖𝑘𝜃𝑚(𝑥∗, 𝑥𝑖)

with 𝛼 = (𝐾 + 𝜎2noise𝐼)−1y. GPs: probabilistic counterpart of kernel methods.
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Animations are always better to understand
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You probably used GPs at some point without even noticing

Brownian Motion is a GP where the kernel is 𝑘(𝑥, 𝑥′) = min(𝑥, 𝑥′)

9



You probably used GPs at some point without even noticing

In the infinite number of neurons, 1-layer
Neural Networks can be written as GPs

𝑓(𝑥) = 𝑏 +
𝐿
􏾜
𝑙=1
𝑣𝑙𝑠(𝑤𝑙𝑥 + 𝑏𝑙)

Under the assumption of i.i.d Gaussian weights {𝑣𝑙}𝑙, {𝑤𝑙}𝑙 and biases 𝑏, {𝑏𝑙}𝑙,

𝔼[𝑓(𝑥)] = 0 and Cov[𝑓(𝑥), 𝑓(𝑥′)] = 𝜎2𝑏 + 𝜎2𝑣𝐿𝔼𝑤,𝑏[𝑠(𝑤𝑥 + 𝑏)𝑠(𝑤𝑥′ + 𝑏)]

Scale the output variance with 𝜎2𝑣 =
𝜔
𝐿 and apply CLT to get the final kernel.

9



You probably used GPs at some point without even noticing

The cubic smoothing spline estimate ̂𝑓 of the function 𝑓 is also a GP

argmin
̂𝑓

𝑛
􏾜
𝑖=1
( ̂𝑓(𝑥𝑖) − 𝑦𝑖)2 + 𝜆􏾙

1

0
̂𝑓″(𝑥)2d𝑥

⟺ ̂𝑓 ∼ 𝒢𝒫 􏿶0, 𝜎amp 􏿶
|𝑥 − 𝑥′|
2 min(𝑥, 𝑥′)2 + min(𝑥, 𝑥′)3

3 􏿹 + 𝜎noise𝛿𝑥𝑥′)􏿹

Smoothing Spline covariance Radial Basis Function covariance

Posterior Mean 2 Standard Deviation Posterior Draws
9



You probably used GPs at some point without even noticing
Kalman Filters are a particular type of GPs equipped with the Markov property
Classical GP regression problem (⋆)

𝑈(𝑡) ∼ 𝒢𝒫(0, 𝑘(𝑡, 𝑡′))
𝑌𝑡 = 𝑈(𝑡𝑘) + 𝜉𝑘

9



You probably used GPs at some point without even noticing
Kalman Filters are a particular type of GPs equipped with the Markov property
Classical GP regression problem (⋆)

𝑈(𝑡) ∼ 𝒢𝒫(0, 𝑘(𝑡, 𝑡′))
𝑌𝑡 = 𝑈(𝑡𝑘) + 𝜉𝑘

Will lead to the same solution as the smoothing problem (⋆⋆)

𝑑 ̄𝑈(𝑡) = 𝐴 ̄𝑈(𝑡) + 𝐵𝑑𝑊(𝑡)
𝑈(𝑡0) = 𝑈0 ∼ 𝒩 (0, 𝑃0)

𝑈 = 𝐻𝑈̄

(⋆): you provide the kernel 𝑘. (⋆⋆): you provide the SDE matrices𝐴,𝐵.
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Extensions

Nonstationary kernels
Classical kernels 𝑘𝜃𝑘(𝑥, 𝑥

′) can be written 𝑘𝜃𝑘(ℎ) with ℎ = (𝑥 − 𝑥
′):

⟹ output correlation only depends on the distance between inputs, not their lo-
cation, stationnarity: 𝑝(𝑥1, … , 𝑥𝑛) = 𝑝(𝑥1+𝜏, … , 𝑥𝑛+𝜏).
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E.g. make hyperparameters a function of the input 𝑘(𝑥, 𝑥′) = 𝜎amp exp 􏿵−
1
2

(𝑥−𝑥′)2

ℓ(𝑥)2+ℓ(𝑥′)2 􏿸
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Extensions

Multitask GPs for multiple outputs
Extend the input space with a patient dimension: 𝑥 ← (𝑥, 𝑖) and define

𝑘((𝑥, 𝑖), (𝑥′, 𝑖′)) = 𝑘𝜃(𝑥, 𝑥′)𝑘task(𝑖, 𝑖′).

Typically, 𝑘task is the inter-patient covariance matrix, estimated from data.
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Back to the original problem
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𝑦𝑖(𝑡) = 𝜇0(𝑡) + 𝑓𝑖(𝑡) + 𝜀𝑖(𝑡), 𝑖 = 1, … ,𝑀
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MAGMA - Multi task Gaussian processes with commonmean
Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey, 2022

𝑦𝑖(𝑡) = 𝜇0(𝑡) + 𝑓𝑖(𝑡) + 𝜀𝑖(𝑡)
𝜇0(⋅) ∼ 𝒢𝒫(𝑚0(⋅), 𝑘𝜃0(⋅, ⋅))
𝑓𝑖(⋅) ∼ 𝒢𝒫(0, 𝑐𝜃𝑖(⋅, ⋅))
𝜀𝑖(⋅) ∼ 𝒩 (0, 𝜎2noise,𝑖𝐼)

Assumptions:
𝑓𝑖’s independent, 𝜀𝑖’s independent
∀𝑖, 𝜇0, 𝑓𝑖, 𝜀𝑖 are independent

⟹ {𝑦𝑖|𝜇0}𝑖 are independent

y𝑖(t𝑖)|𝜇0(t𝑖) ∼ 𝒩 􏿵y𝑖; 𝜇0(t𝑖),𝛹
t
𝜃𝑖,𝜎2noise,𝑖

􏿸

𝑚0 is the (hyper)-prior mean, and encodesmechanistic knowledge.
It can be parametrized as well.
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Population mean a posteriori distribution

Hyperparameters: 𝛩 = (𝜃0, {𝜃𝑖}𝑖, {𝜎2noise,i}𝑖). Assuming for simplicity t𝑖 = t𝑖′ = t,

𝑝(𝜇0(t)|{y𝑖}𝑖, 𝛩) = 𝒩 (𝑚̂0(t), K̂ t)

K̂ =

⎛
⎜⎜⎜⎜⎜⎝K

t
𝜃0
−1 +

𝑀
􏾜
𝑖=1
𝛹 t
𝜃𝑖,𝜎2noise,𝑖

−1
⎞
⎟⎟⎟⎟⎟⎠

−1

𝑚̂0(t) = K̂ t

⎛
⎜⎜⎜⎜⎜⎝K

t
𝜃0
−1𝑚0(t) +

𝑀
􏾜
𝑖=1
𝛹 t
𝜃𝑖,𝜎2noise,𝑖

−1
y𝑖

⎞
⎟⎟⎟⎟⎟⎠

𝜃̂0 and (𝜃̂𝑖, 𝜎̂2noise,𝑖) obtained independently like in usual mixed-effectmodels

We can investigate how𝑚0 and 𝑚̂0 differ, what happens if𝑚0 is misspecified…
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Case study
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𝐴𝑏(𝑡; 𝜃𝑖) = 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)𝐴𝑏0,𝑖 + 𝜙𝑆,𝑖
𝑒−𝛿𝑆,𝑖(𝑡−𝑡0) − 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)

𝛿𝐴𝑏,𝑖 − 𝛿𝑆,𝑖
+ 𝜙𝐿

𝑒−𝛿𝐿(𝑡−𝑡0) − 𝑒−𝛿𝐴𝑏,𝑖(𝑡−𝑡0)

𝛿𝐴𝑏,𝑖 − 𝛿𝐿

𝑀 = 15 patients
≈ 5 − 8 observations per patient at different time points
No mixed-effect for the long-life parameters 𝛿𝐿 and 𝜙𝐿
Noise is added to the observations
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Comparing learned mean functions 𝑚̂0 for different priors𝑚0
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𝑚̂0 slightly deviates from the (well-specified) prior𝑚0 to better fit the data

Post hoc sanity check of the prior: 𝑚0 included in the CIs computed from 𝑚̂0
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𝑚̂0 clearly deviates from the (misspecified) prior𝑚0 to better fit the data

Post hoc sanity check: over the long run,𝑚0 without long-life term
is not included in 𝑚̂0’s confidence intervals!
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Comparing learned mean functions 𝑚̂0 for different priors𝑚0
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For the misspecified case, 𝑚̂0 adapts its mean level
In the presence of data, confidence intervals clearly rule out the misspecified prior
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Comparing learned mean functions 𝑚̂0 for different priors𝑚0
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When data is abundant, even a zero-mean prior𝑚0 ≡ 0
yields a correct estimate of the population dynamics
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Individual results for 5 out of 15 patients
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Results averaged over 20 different datasets for𝑀 = 15 patients
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When considering the whole time horizon, the prior clearly matters

Over [15, 250], except for misspecified prior, performances are roughly similar
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Roadmap

Often, the dynamics are defined through ODEs with no closed-form solution
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑦𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝜀𝑖(𝑡)
𝑋̇𝑖(𝑡) = 𝜇0(𝑋𝑖(𝑡)) + 𝑓𝑖(𝑋𝑖(𝑡))
𝑋𝑖(0) = 𝑥0,𝑖

𝑝(𝜇0|y) is not Gaussian anymore! Requires MCMC, Variational Inference...

Handling𝐷-dimensional ODE systems,𝐷 > 1
What if we do not know the full dynamics of unobserved variables

Bayesian Experimental Design
▶ E.g., given the current model, when should patient 𝑖 be called for the next
measurement so that population predictive uncertainty is maximally reduced?
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Conclusion

GPs 𝒢𝒫(𝑚, 𝑘) are powerful tools for nonparametric regression
▶ The kernel 𝑘 captures abstract function attributes (smoothness, stationarity)…

▶ …While also handling complex correlation structures among subjects

▶ The mean function𝑚 encompassesmechanistic knowledge

GPs act as a bridge between statistical and mechanistic modeling frameworks
▶ Their strength lies in the low-data regime, typical in health-related problems

The current challenge is to place GP priors over vector fields

Thank you for your attention
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