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An overlooked problem

Poloczek et al" introduced a novel MFBO algorithm. For evaluation, they considered
the Rosenbrock function and a low fidelity version over [-5,5]?

Fo909 = ~(100e; = 1) + (1 - 1)
fAIS(X) — fObj(x) + 2sin(10x; + 5x,)

> @

N ARAN

Notice any difference? No? That's normal
Query cost for f°%: 1000. For fA1S 2 1\ (V)_/~

'Multi-Information Source Optimization, NeurlPS'17



Hyperparameter tuning with highly reliable lower fidelities

XGBoost hyperparameter optimization benchmark performed by Shibo Li et al?
foPi(x) = rMSE using XGB with 100 weak learners trees at cost 10

FAS(x) = rMSE XGB with 10 weak learners trees at cost 1

0.2
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Current methods always consider the lower fidelity as (extremely) relevant
*Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks, NeurlPS'21
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What does it mean to be unreliable?
Hand-waving definition based-on inference regret. Define

x¥ = argmax u3F(x|Z°F)

xeZ’
x}F = argmax uMF (x| ZMF)
xeZ’

An unreliable information source is s.t. f%(x37) > fo%(x!F) for the same budget.

Not model-free? Depends on kernel, acquisition function...
But most importantly, depends on Z;!
Egse sy [FOGD ] 2 Egpe_ gy [FIP)]

Intractable.
— Not straightforward to define

Our approach: start from an “unreliable belief” and develop a defensive strategy



A 6D case: the Hartmann problem

For A, P € .#,6(R) two matrices, x € [0,1]6 £ € [0,1], we define

fOx) = Z a;exp |-

i Ajjxj - Pij)]
j=1
a=(1.0-01(1-1¢),12,3.0,32)7
The objective is f), with query cost Aobj = 1. BO is performed in 3 scenarios, using:
@ Only f® (Single-Fidelity BO)
o fU and an informative AIS: f©2, 1,5 = 0.2 (Multi-Fidelity BO)

e U andanirrelevant AIS: f"(x) = 2?21 (100(xi+1 —x2)% + (x; - 1)2), Aps = 0.2
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Multi-Fidelity BO = Single-Fidelity BOJ
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Multi-Fidelity BO is not robust to unreliable Information Sources

Multi-Fidelity BO === Single-Fidelity BO s Ours - Robust Multi-Fidelity BO J
Hartmann6D

Informative Auxiliary Information Source

Irrelevant Auxiliary Information Source
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Not far from a well-known problem in transfer learning: negative transfer

@ Main aim of our contribution: robustness to irrelevant AlS...
@ ..While still accelerating convergence for relevant AIS



Introducing robust MFBO (rMFBO)

18t idea: perform a test on multi-fidelity proposals to ensure relevant information is added

(X?AF/ gt) = argmaX OC(X, flyMF/ OMF, gMF)/Alt
xeZ’ L€{obj, AIS}

sOMF, £)> ¢y

@ Prevent misleading information to flow into the joint GP model
@ Guarantee budget is not wasted

IF O£ ZMF)
A
This step can be seen as a more demanding acquisition strategy:

For s, we consider information gain: s(x, {) =

@ Compute the acquisition function maximizer
@ Ensure that the found maximum is large enough



Introducing robust MFBO (rMFBO)

2"d jdea: maintain a single-fidelity track alongside the multi-fidelity one. Revert to it if needed.
@ Keep track of a single-output GP...
@ ..And of what would have looked like the acquisition trajectory without AIS

At iteration f, choose between two queries:

(XI;A F/ ft) = argmax a(xl leMFI OME/ QMF)//\lt
xeZ’ Le{obj, AlS}
(P, obj) = argmax a(xlpse, o5, ZPF)

XeZ

If ome(P>", 0bj) < ¢1 A s(xMF, £,) > ¢y, choose (x!F, £,)
Because oyp(x}, 0bj) <c; = joint model reliable at x?°".

Therefore Z7P5F (x?SF, o) (foF)): creating a pseudo single fidelity track



Summary

owrOE,0bj) < ¢ A SOMFE) 2, =

pick (xi'", &)
M = (", fOH)
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If not satisfied:
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Q@ OFF (X?SF,fObj (X?SF))

pICk (XI;AFI gt)
GMF — (M, FEO P

pSF  obj, pSF
DPF — (x} pme(XE )
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Summary

This does:

reliable case

pick (xMF

GMF(X?SF,Obj) <c A S(XMF, ft) >0 —

Ensures
pseudo-queries
added to SFBO
are trustworthy:
unreliable case

If not satisfied:
@ Pick x*°7, obj)

e 9M|: - (X;t)SF’fobj (X?SF))
e c@psp - (X?SF,fObj (X?SF))

gMF —
GPSF

/gt)
Xy, fO )

SF obj, pSF
O pp(xt)
But does not say
anything about the
relevance of xMF
as potential
maximizer!




This does:

Summary reliable case
pick (x}'F, &)

oue0E> 0b)) <0 A SOMEE) 20 = | MF  (xXMF, £ (xMFy)

neures D <, ™)
pseudo-queries
added to SFBO But does not say

anything about the

are trustworthy: l e
relevance of x;

unreliable case

If not satisfied: E;:a?((i)rfqeirz](talr?l
@ Pick x*°7, obj)
o gMF (X?SF,fObj (X?SF))
9 GPSF (X?SF,fObj (X?SF))
ZPSF and Z5F only differ at the points where we inputed u5 (x°F) !
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rMFBO regret can be tied to that of SFBO

Assumptions:
° f°bj is drawn from a GP with zero-mean and covariance function x(x, x”)
@ « is known and twice differentiable

@ P|sup
xeZ’

afobj

&x]

>LJ<ae_(L/bf)2 Vjefl,..,d}, fora, b; >0
@ The mapping (x, &) — a(x|p(f|2)) is twice differentiable

Theorem:
for any AIS, the difference in regrets achieved by SFBO and rMFBO can be bounded.

R(A,xMF) < R(A,x3F) + e max [TMTdT+1,2} with probability > g (1 —daexp (—blz))

&
c1(g,9) = ——.
1(¢,9) Floatia)

In practice, bound really useful the first few rounds...

Theorem does not depend on c;.
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Key ideas for proof

obj
@ Bound ||xf+1 x3Fle (induction over t). Then use IP [ sup gx > L] < ge ()
xXeZ’ ]
@ Consider &, as at(d + 1)-dimensional vector &; = (x(l) o ,xgd),yl, e Yp)

View x;, = argmax__., a(x|Z;) as an implicit function ; — x;,1(Z})

Xt+1

Mt maX ” FY; ”op

ForD; := {2 Z = (1 -uw)ZP" + u%SF,u € [0,1]}.
M, is the sensitivity of the next query to change in the dataset. Allows to bound

SF SF SF
X221 = X35 lleo = IIXp41(ZFF) = %01 (PP )leo < 11287 = 27711 0M,

£O0(x) — p(x) N c)

1 2
—exp|l-— exercise )
o(x) ( )

fobisadraw fromaGP = lP( > >

14



Results on 2D case

Acquisition function: max-value entropy
search

I(f.; fO12)

atx, 0) = =5

Kernel:
k((x, €), (X", €')) = Kinput(x, x"kis (£, ')
c; = ¢y = 0.1 throughout all experiments

Obj cost = 1. AIS cost: 0.1 (rows 1-3), 0.2
(rows 2-4-5)

More acquisition functions, kernels and
ablation studies in the paper!

MF-MES m— SF-MES m— Our method - ANIF—]\IESJ

Objective Auxiliary IS
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Open questions

@ Instead of keeping track of two separate GPs, can we come up with a joint
model that does the same job?

@ Definition of an unreliable information source...
@ Find a principled way to benchmark MFBO algorithms with IS of any relevance

@ Concrete case with human experts
(FCALI: Real Al for Real People in the Real World)

Questions?



Some stuff "\_(V)_/~

1(fO), £29 | ZMFy

5(x, ) = o = H(FO0)IZ) ~ E o, [HFO0IF 2]
We have that
) ~ Yy 0Py, (X))
It ¥y | 70~ g, ooy ~10EP 0,000

i isthe normal p.df. and ¥ normal c.df.;y, (x) = y—*_*(‘f()x)
O X

rarely in practice greater than —log(1/2), for y,, (x) = 0.

Roughly speaking, c, = 0.1 = AIS query should give at least about 15% of the max
info gain.

We set ¢, = —u1og(1/2), where u is the percent of the maximum information gain
required for a cost-adjusted AlS query.

We found u = 15% works as a good default value.

.Tisunbounded above but



Some stuff (continued) "\_(*V)_/~

mput(X XY+ ke(x,x") =0 #1
|nput( /) otherwise

kmiso((x, €), (X', ")) = {

kir((x,0), (¢, ) = {];j”p“t(x’x’) + (=00 - ksl x) €#1, ¢ #1

input (0, X”) otherwise
Ckinput(xz x)+(@1-0)01- f/)kinput(xr x) €#1, 0 #1
Ckinput(xz x’) otherwise

kos((x, 0), (X", ")) = {



