Sur l'apprentissage automatique de modèles mécanistes dynamiques à partir de données temporelles avec application aux chronothérapies personnalisées

Julien Martinelli

From science to health

Vendredi 18 Février 2022

The circadian timing system (CTS)

- A master clock acting as an autonomous ≈ 24 h-oscillator synchronised by external cues
- This master clock entrains the peripheral clocks in the cells via physiological signals
- The peripheral clock induces oscillations in key intracellular processes

The circadian timing system (CTS)

- A master clock acting as an autonomous ≈ 24 h-oscillator synchronised by external cues
- This master clock entrains the peripheral clocks in the cells via physiological signals
- The peripheral clock induces oscillations in key intracellular processes

[Innominato et al., Cancer Medicine, 2020]

- Multicentric study 193 patients 67% men
- Metastatic colorectal cancer
- Irinotecan administrated at 6 different times

Large inter-patient variability \rightarrow Need for personalized optimal timing

Necessary rhythms of pharmacological proteins required [Dulong *et al., Mol. Cancer Ther.*, 2015]

 \rightarrow Data collection too invasive and costly

Nowadays, access to noninvasive measurements through wearables data

Adapted from [Komarzynski et al., JCI insight, 2019]

Can chronotherapies be personalized using noninvasive data measurements?

Can chronotherapies be personalized using noninvasive data measurements?

Model learning approaches can be designed to identify unknown interactions

Outline

A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer

2 Model learning to identify systemic regulators of the peripheral circadian clock

8 Reactmine: an algorithm for inferring biochemical reactions from time series data

Part 1 - A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer

- Simplification of the PER/CRY loop
- Explicit modeling of CLOCK/BMAL dimerization

- 18 variables
- 58 parameters
- Integration of proteomics, genomics and sub cellular data
- Absolutely quantitative: mol/L output

- 18 variables
- 58 parameters
- Integration of proteomics, genomics and sub cellular data
- Absolutely quantitative: mol/L output

$$\frac{dx}{dt} = V_{\max} \mathsf{Transc}(\mathbf{M}, \gamma) - \alpha x$$

- 18 variables
- 58 parameters
- Integration of proteomics, genomics and sub cellular data
- Absolutely quantitative: mol/L output

$$\frac{dx}{dt} = V_{\max} \operatorname{Transc}(\mathbf{M}, \gamma) - \alpha x$$

$$\operatorname{Transc}_{Bmal} = \frac{1 + \gamma_1 \left(\frac{\operatorname{ROR}}{\gamma_2}\right)^{\gamma_3}}{1 + \left(\frac{\operatorname{REV-ERB}}{\gamma_4}\right)^{\gamma_5} + \left(\frac{\operatorname{ROR}}{\gamma_2}\right)^{\gamma_3}}$$

Fit of the model on liver mouse data from [Narumi et al., PNAS, 2016]

- Parameter fitting using CMA-ES [Hansen et al., Evolutionary Computation, 2001].
- Fitness function: least squares
- Biological constraints added to the optimization

Application to human colon cancer cell lines SW480 and SW620

Cells synchronized by medium change

Model refitted to gene expression data from two different cell lines

- SW480 displays well-functioning clock
- SW620 oscillations shifted and dampened compared to liver and SW480

Extension to PK-PD network of anticancer drug irinotecan

Extension to PK-PD network of anticancer drug irinotecan

- Clock model connected to Irinotecan PK-PD model from [Dulong et al., MCT, 2015]
- Explicit modeling of the circadian clock effect instead of forcing functions.

Time-dependent treatment of human cancer cell lines

Time aligned to treatment onset $2\mu M$ irinotecan at 4 different circadian times Dead cells count: cyanine (Incucyte Cytotox Dyes)

- Phase and amplitude well-captured for SW480, not mean.
- Low time dependency for SW620 toxicity profile

Conclusion - first part

- A novel model of the mammalian circadian clock
 - Fitted with time-resolved gene expression and protein abundances
 - Absolutely quantitative
- Successfully connected to the irinotecan PK-PD network
- Enables **personalization** of irinotecan timing from clock and pharmacological mRNAs

Wearable technologies

Adapted from [Komarzynski et al., JCI insight, 2019]

Part 2 - Model learning to identify systemic regulators of the peripheral circadian clock

Mouse class systemic regulators data

- 4 mouse classes (2 sex / 2 strains)
- 12-hour light exposure followed by 12-hour darkness

Solid lines: gaussian process regression smoothing.

Mouse class gene expression data (liver)

RT-qPCR data. Solid lines and standard deviations: gaussian process regression smoothing.

Identifying the action of systemic regulators on the peripheral circadian clock

Identifying the action of systemic regulators on the peripheral circadian clock

Identifying the action of systemic regulators on the peripheral circadian clock

(obtained after data normalization)

Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators z on gene transcription

$$\frac{dx^{vivo}}{dt} = f_{\text{Transc}}(z)V_{\max}\text{Transc}(\mathbf{M}, \gamma) - \alpha x^{vivo}$$

Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators z on gene transcription

$$\frac{dx^{vivo}}{dt} = f_{\text{Transc}}(z)V_{\text{max}}\text{Transc}(M, \gamma) - \alpha x^{vivo}$$
$$\implies f_{\text{Transc}}(z) \propto \frac{\frac{dx^{vivo}}{dt} + \alpha x^{vivo}}{\text{Transc}(M, \gamma)}$$

Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators z on gene transcription

$$\frac{dx^{vivo}}{dt} = f_{\text{Transc}}(z)V_{\max}\text{Transc}(M, \gamma) - \alpha x^{vivo}$$
$$\implies f_{\text{Transc}}(z) \propto \frac{\frac{dx^{vivo}}{dt} + \alpha x^{vivo}}{\text{Transc}(M, \gamma)}$$

Hypothesis 2: Multiplicative control of systemic regulators ${\rm z}$ on gene mRNA degradation

$$\frac{dx^{vivo}}{dt} = V_{\max} \operatorname{Transc}(\mathbf{M}, \gamma) - f_{\mathsf{Deg}}(z) \alpha x^{vivo}$$
$$\implies f_{\mathsf{Deg}}(z) \propto \frac{V_{\max} \operatorname{Transc}(\mathbf{M}, \gamma) - \frac{dx^{vivo}}{dt}}{x^{vivo}}$$

Data for x = Bmal1, Per2 and Rev-Erb α mRNAs

$$\Leftrightarrow f_{\mathsf{Transc}}(\bar{z}(t_i)) \overset{\propto}{\sim} \frac{\frac{\Delta \bar{x}^{vivo}(t_i)}{\Delta t_i} + \alpha \bar{x}^{vivo}(t_i)}{\frac{\Delta t_i}{\mathsf{Transc}}(\mathsf{M}, \gamma)} := y(t_i)$$

Learn
$$f_{\text{Transc}}$$
 using the samples $\{(\bar{z}(t_i), y(t_i)), i = \{1, ..., N-1\}\}$

$$\Leftrightarrow f_{\mathsf{Transc}}(\bar{z}(t_i)) \overset{\propto}{\sim} \frac{\frac{\Delta \bar{x}^{vivo}(t_i)}{\Delta t_i} + \alpha \bar{x}^{vivo}(t_i)}{\frac{\Delta t_i}{\mathsf{Transc}}(\mathsf{M}, \gamma)} := y(t_i)$$

Learn
$$f_{\text{Transc}}$$
 using the samples $\{(\bar{z}(t_i), y(t_i)), i = \{1, ..., N-1\}\}$
Systemic Regulators

Systemic regulators identification as a regression problem

Learning f_{Transc} usually boils down to solve

$$\underset{\hat{f} \in \mathcal{F}}{\operatorname{argmin}} \ \sum_{i=1}^{N-1} \left(y(t_i) - \hat{f}(\bar{z}(t_i)) \right)^2$$

For this study, ${\mathscr F}$ will be the space of linear functions.

Computing y: acquisition of clock parameters and protein levels in vitro

In vitro setting $\implies f_{\text{Transc}}(\mathbf{z})$ constant \implies Fit model on hepatocytes data

Computing y: acquisition of clock parameters and protein levels in vitro

In vitro setting $\implies f_{\text{Transc}}(z)$ constant \implies Fit model on hepatocytes data

Residual trajectories y(t)

Hypothesis: "in vivo clock \approx in vitro clock + systemic control + perturbation noise"

ightarrow Perturbations of parameter values to obtain multiple residual trajectories

Control on gene transcription

Input/output normalized $\implies \mathscr{E}$ is an average % of unexplained variance

Control on gene transcription

- Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erbα
- F-test for nested models concludes on 2-terms
- \implies No **linear** control of regulators on *Rev-Erb* α transcription

Input/output normalized $\implies \mathscr{E}$ is an average % of unexplained variance

Control on gene transcription

- Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erbα
- F-test for nested models concludes on 2-terms
- \implies No **linear** control of regulators on *Rev-Erb* α transcription

No model with < 3 terms → No **linear** control of regulators on gene mRNA degradation

Control on gene transcription

- Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erbα
- F-test for nested models concludes on 2-terms
- \implies No **linear** control of regulators on *Rev-Erb* α transcription

No model with < 3 terms → No **linear** control of regulators on gene mRNA degradation

Focus on 2-term models for Transcription: 40 models

2-term models ranking

- Food Intake and Temperature stand out as best models key components.
- Melatonin included as negative control: validation of the approach.

Classwise weights analysis for best 2-term models

Conclusion - second part

Biological insights and perspectives:

- No realistic control for all 3 genes mRNA degradation & $\textit{Rev-Erb}\alpha$ transcription
 - Control might not be linear
 - Non measured systemic variables may be responsible
- Systemic regulators may act on a part of the clock where data is not available
- Food Intake and Temperature main actors for *Bmal1* and *Per2* transcription
- Statistically significant differences of regulator weights on the basis of genetic background and sex: need for patient stratification

Part 3 - Reactmine: an algorithm for inferring biochemical reactions from time series data

Input: single time series data $Y = (y_{l,i})_{\substack{1 \le l \le n \\ 1 \le i \le m}}$ Chemical Reaction Network $A \stackrel{l}{\Rightarrow} B A \stackrel{0.999}{\Rightarrow} B$ $B \stackrel{l}{\Rightarrow} C B \stackrel{1.001}{\Rightarrow} C$ $C \stackrel{l}{\Rightarrow} D C \stackrel{1.002}{\Rightarrow} D$ $D \stackrel{l}{\Rightarrow} E D \stackrel{0.999}{\Rightarrow} E$

Framework

Reaction: (R, P, f) with R (resp. P) set of reactants (resp. products) and f rate function.

Chemical Reaction Network (CRN): Finite set of reactions

Framework

Reaction: (R, P, f) with R (resp. P) set of reactants (resp. products) and f rate function.

Chemical Reaction Network (CRN): Finite set of reactions

- 0/1 Stoichiometry
- Elementary reactions: at most two reactants
- At most 1 catalyst

Framework

Reaction: (R, P, f) with R (resp. P) set of reactants (resp. products) and f rate function.

Chemical Reaction Network (CRN): Finite set of reactions

- 0/1 Stoichiometry
- Elementary reactions: at most two reactants
- At most 1 catalyst

Learning protocol:

- Learn a CRN involving only observed species
- Based on a single trace (no combinatorics of initial states and Knockouts)

Velocities
$$\hat{V} = (\hat{v}_{l,i})_{\substack{1 \leq l \leq n \\ 1 \leq i \leq m}}$$

 $\hat{v}_{l,i} = \frac{y_{l+1,i} - y_{l,i}}{t_{l+1} - t_l}$

For each reaction skeleton r = (R, P)associate kinetic rate

$$\forall j \in R \cup P, \forall l \in \{1, \dots, n\}, |v_{l,j}| = k \prod_{u \in R} y_{l,u}$$

Estimate k reliably on the support set $\mathcal{T}(r)$

$$\begin{split} \hat{k} &= \frac{1}{\#\mathscr{T}(r)} \sum_{l \in \mathscr{T}(r)} \frac{|\hat{v}_{l,j}|}{\prod_{u \in R} y_{l,u}} \\ \text{Coefficient of variation (CV) } \rho &= \frac{\sigma}{|\hat{k}|} \end{split}$$

Select reaction minimizing CV $r^* = \underset{r}{\operatorname{argmin}} \rho_r$

Accept r^* if $\rho_{r^*} < \alpha$

4 Parameters:

- δ_{\max} Species variations similarity threshold
- α CV threshold
- γ CRN size limit
- β Number of reaction candidates per node

- $\bullet~\delta_{max}$ species variations similarity threshold fixed to 3
- CRN size limit γ fixed to 6

Chain

Hidden CRN	Learned CRN
$A \stackrel{1}{\Longrightarrow} B$	$A \stackrel{0.999}{\Longrightarrow} B$
$\stackrel{1}{\Longrightarrow} \stackrel{1}{\Longrightarrow} C$	$\stackrel{1.001}{\Longrightarrow}$ C
$C \stackrel{1}{\Longrightarrow} D$	$C \stackrel{1.002}{\Longrightarrow} D$
$D \stackrel{1}{\Longrightarrow} E$	$D \stackrel{0.999}{\Longrightarrow} E$

- $\bullet~\delta_{max}$ species variations similarity threshold fixed to 3
- CRN size limit γ fixed to 6

- $\bullet~\delta_{max}$ species variations similarity threshold fixed to 3
- CRN size limit γ fixed to 6

Parallel

- $\bullet~\delta_{max}$ species variations similarity threshold fixed to 3
- CRN size limit γ fixed to 6

Loop

Hidden CRN	Learned CRN
$A \stackrel{1}{\Longrightarrow} B$	$A \stackrel{1.0103}{\Longrightarrow} B$
$\stackrel{1}{\Longrightarrow} \stackrel{1}{\longrightarrow} C$	$\stackrel{1.009}{\Longrightarrow} C$
$C \stackrel{1}{\Longrightarrow} D$	$C \stackrel{1.009}{\Longrightarrow} D$
$D \stackrel{1}{\Longrightarrow} E$	$D \stackrel{1.009}{\Longrightarrow} E$
$E \stackrel{1}{\Longrightarrow} A$	$E \stackrel{1.01}{\Longrightarrow} A$

Results on the Loop CRN

Hidden CRN	Learned CRN
$A \stackrel{1}{\Longrightarrow} B$	$A \stackrel{1.0103}{\Longrightarrow} B$
$\stackrel{1}{\Longrightarrow} \stackrel{1}{\Longrightarrow} C$	$\stackrel{1.009}{\Longrightarrow} C$
$C \stackrel{1}{\Longrightarrow} D$	$C \stackrel{1.009}{\Longrightarrow} D$
$D \stackrel{1}{\Longrightarrow} E$	$D \stackrel{1.009}{\Longrightarrow} E$
$E \stackrel{1}{\Longrightarrow} A$	$E \stackrel{1.01}{\Longrightarrow} A$

Recipe for success:

- $A \implies B$ witnessed with enough candidates allowed
- Kinetic inference based on support rather than whole trace

Reactmine parameter sensibility on the Loop CRN

- Loop CRN recovered for specific parameter values
- But consistent results for numerous (α, β) parameter combinations

		whole trace train	is close charge \overline{n}	I(I,K)J 2	
	0.0001 -	0.08963	0.08963	0.08963	
reshold	0.001 -	0.08963	0.08963	0.08963	
	0.0025 -				- 0.08
	0.005 -				
	0.01 -				- 0.07
	0.02 -	0.00423	0.00173	0.00173	
	0.03 -	0.00375	0.00173	0.00173	- 0.06
	0.05 -	0.00423	0.00173	0.00173	
	0.1 -	0.00391	0.00391	0.00391	- 0.05
	0.125 -	0.00391	0.00173	0.00134	
÷	0.15 -	0.00287	0.00173	0.00134	- 0.04
αCV	0.175 -	0.00287	0.0	0.0	
	0.2 -	0.00287	0.0	0.0	- 0.03
	0.225 -	0.00287	0.0	0.0	
	0.25 -	0.00287	0.0	0.0	- 0.02
	0.275 -	0.0	0.0	0.0	
	0.5 -	0.00287	0.00287	0.0	- 0.01
	1.0 -	0.00287	0.0	0.0	0.01
	2.0 -	0.00287	0.0	0.0	
		4	6	8	
		Q Nur	her of reaction candidates nor neg		

Whole trace transition CRN discrepancy $\frac{1}{n} ||\hat{\mathbf{V}} - \mathbf{F}(\mathbf{Y}, \mathbf{k})\mathbf{S}||_2^2$

eta Number of reaction candidates per node

Parameter can be selected by minimizing whole trace CRN transition discrepancy

Conclusion - third part

- A method to **sequentially** infer biochemical reactions.
 - Parsimony of the inferred network integrated by construction.
- Philosophy: **"mining" reactions** at specific time points where they are preponderant.
 - More reliable estimation of reaction kinetics based on support
 - Explainability of the method through the support set of inferred reaction
- Extension from greedy to research algorithm allowed reconstruction of a cyclic CRN.
- Application to biological models with multiple time scales in preparation.

Summary of methodological and biomedical contributions

Summary of methodological and biomedical contributions

New strategies for mechanistic model learning from time series data

- Prior knowledge taken into account under the form of known reactions
- Provide **quantitative** information about inferred interactions

Summary of methodological and biomedical contributions

New strategies for mechanistic model learning from time series data

- Prior knowledge taken into account under the form of known reactions
- Provide quantitative information about inferred interactions

Towards personalizing chronotherapies through wearable sensors

- Novel absolutely quantitative clock model usable for other circadian studies
- Computation of time-dependent toxicity curves from set of mRNAs
- Integrating wearables data to investigate impact of genetic/sex differences on optimal timing