Model learning to identify systemic regulators of the peripheral circadian clock

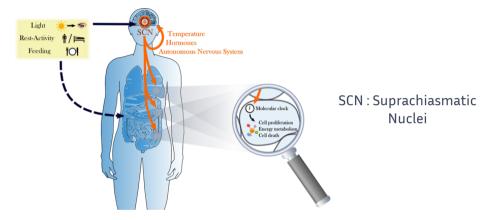
Julien Martinelli

April 16th, 2021

Outline

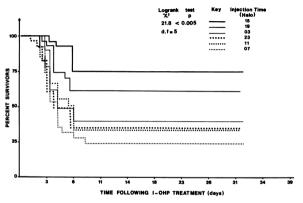
- Biological context and problem
- Available data
- Methods
- Results

The circadian timing system



- ullet A master clock acting as an autonomous pprox 24 h-oscillator synchronised by external cues
- This master clock **entrains** the peripheral clocks in the cells *via* physiological signals
- The peripheral clock induces oscillations in key intracellular processes

Chronotherapy



Oxaliplatin chronotoxicity in mice. Boughattas et al., Cancer Research, 1989

Chronotherapy: optimal drug-time delivery based on the organisms circadian rhythms

Mouse: Chrono toxicity/efficiency for 40/28 drugs (Dallman *et al.*, Trends Mol Med., 2016)

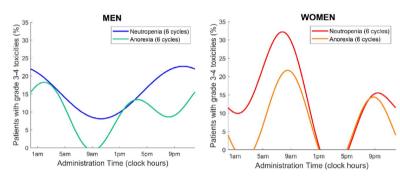
Inter-patient variability

Humans: 5-fold reduction of severe toxicities, doubled antitumoral response

Inter-patient variability

Humans: 5-fold reduction of severe toxicities, doubled antitumoral response

- Multicentric study
 193 patients 67% men
- Metastatic colorectal cancer
- Irinotecan administrated at 6 different times

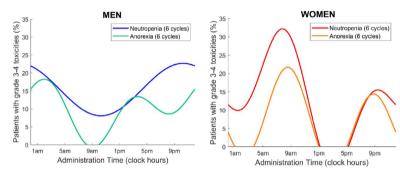


Innominato et al. Cancer Medicine, 2020.

Inter-patient variability

Humans: 5-fold reduction of severe toxicities, doubled antitumoral response

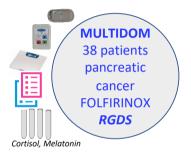
- Multicentric study
 193 patients 67% men
- Metastatic colorectal cancer
- Irinotecan administrated at 6 different times



Innominato et al. Cancer Medicine, 2020.

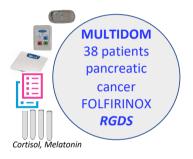
Large inter-patient variability → Need for personalized optimal timing

Collecting data at the patient level with eHealth platforms Picado platform: remote data collection \implies precision medicine



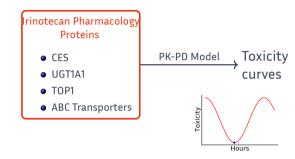
Collecting data at the patient level with eHealth platforms

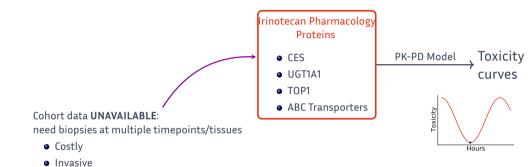
Picado platform: remote data collection \implies precision medicine



Statistical models untrainable \implies Mechanistic models

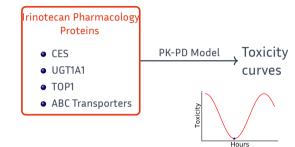
- Accounts for the lack of data
- Available data in mouse can be used for human: multi scale modelling

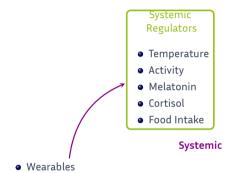


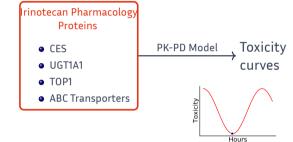


Systemic Regulators

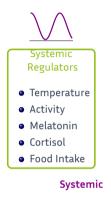
- Temperature
- Activity
- Melatonin
- Cortisol
- Food Intake

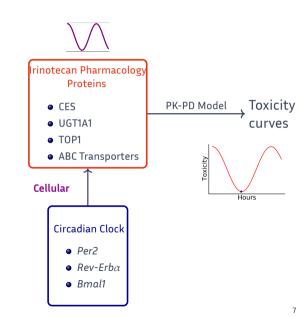


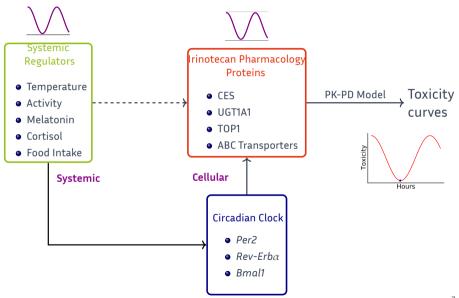


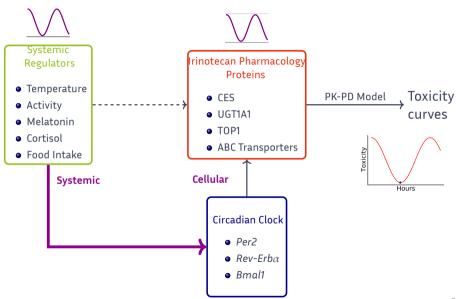


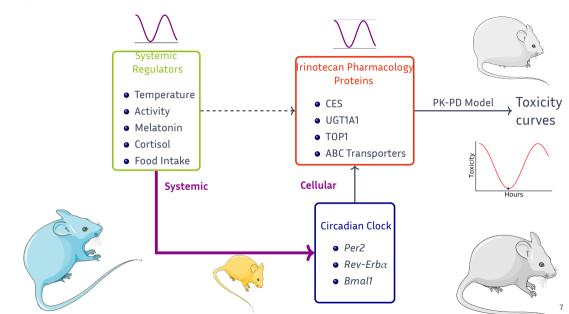
- Saliva samples
- Daily questionnaires



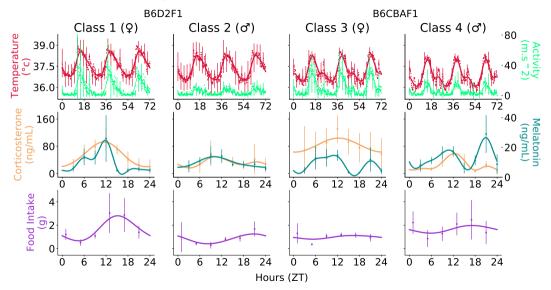






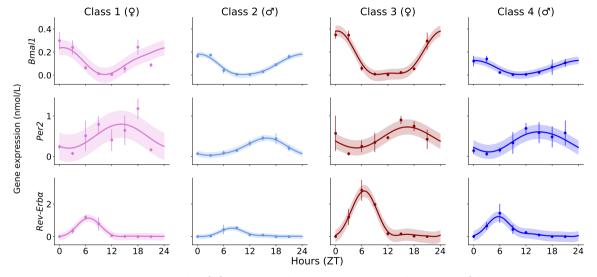


Mouse class systemic regulators data

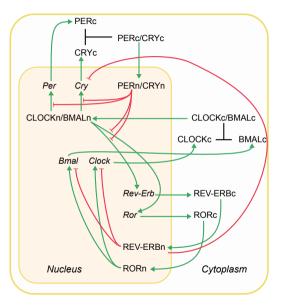


Gaussian process regression smoothing

Mouse class gene expression data



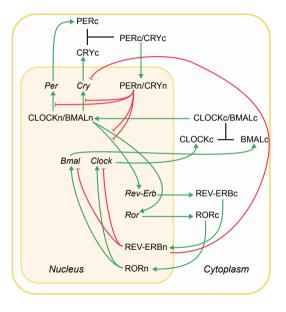
RT-qPCR acquired data. Gaussian process regression smoothing



Ordinary differential equations

$$n_{vars} = 18$$

$$n_{params} = 58$$



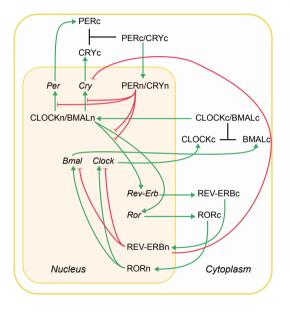
Ordinary differential equations

$$n_{vars} = 18$$

$$n_{params} = 58$$

Dynamics of gene expression:

$$\frac{dx}{dt} = V_{\max} \operatorname{Transc}(M, \gamma) - \alpha x$$



Ordinary differential equations

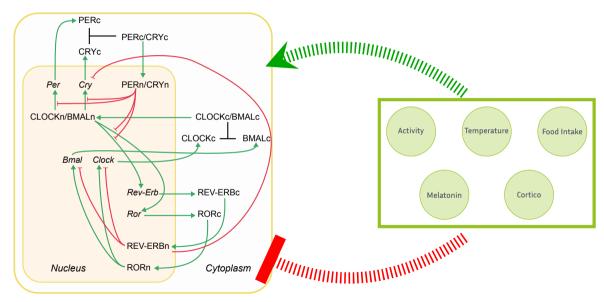
$$n_{vars} = 18$$

$$n_{params} = 58$$

Dynamics of gene expression:

$$\frac{dx}{dt} = V_{\text{max}} \text{Transc}(\mathbf{M}, \gamma) - \alpha x$$

$$\mathsf{Transc}_{Bmal1} = \frac{1 + \gamma_1 \Big(\frac{\mathsf{ROR}}{\gamma_2}\Big)^{\gamma_3}}{1 + \Big(\frac{\mathsf{REV-ERB}}{\gamma_4}\Big)^{\gamma_5} + \Big(\frac{\mathsf{ROR}}{\gamma_2}\Big)^{\gamma_3}} \quad \begin{array}{c} \textit{Hill-like} \\ \textit{kinetics} \end{array}$$



Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}}\text{Transc}(M, \gamma) - \alpha x^{vivo}$$

Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

$$\Leftrightarrow f(z) = \frac{\frac{dx^{vivo}}{dt} + \alpha x^{vivo}}{\text{Transc}(M, \gamma)}$$

Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators \boldsymbol{z} on gene transcription

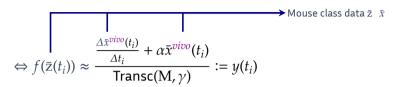
$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}} \text{Transc}(M, \gamma) - \alpha x^{vivo}$$

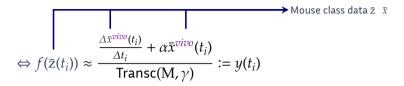
$$\Leftrightarrow f(z) = \frac{\frac{dx^{vivo}}{dt} + \alpha x^{vivo}}{\text{Transc}(M, \gamma)}$$

Hypothesis 2: Multiplicative control of systemic regulators \boldsymbol{z} on gene mRNA degradation

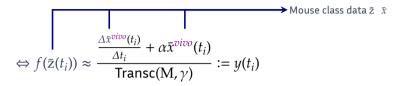
$$\begin{split} \frac{dx^{vivo}}{dt} &= V_{\max} \mathsf{Transc}(\mathsf{M}, \gamma) - f(z) \alpha x^{vivo} \\ \Leftrightarrow f(z) &= \frac{V_{\max} \mathsf{Transc}(\mathsf{M}, \gamma) - \frac{dx^{vivo}}{dt}}{x^{vivo}} \end{split}$$

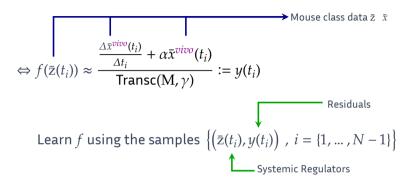
Data for x = Bmal1, Per2 and Rev-Erb α

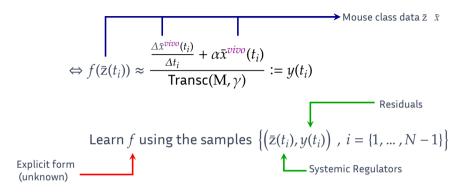


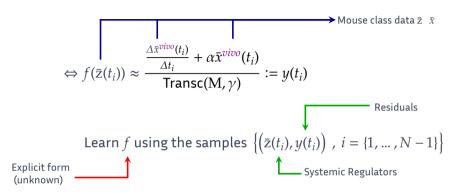


Learn
$$f$$
 using the samples $\{(\bar{z}(t_i), y(t_i)), i = \{1, ..., N-1\}\}$







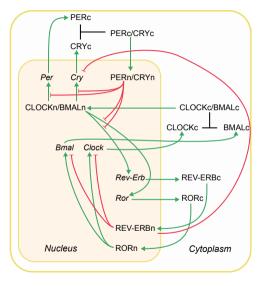


Learning f usually boils down to solve

$$\underset{\hat{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{N-1} \left(y(t_i) - \hat{f}(\bar{\mathbf{z}}(t_i)) \right)^2$$

For this study, ${\mathscr F}$ will be the space of linear functions.

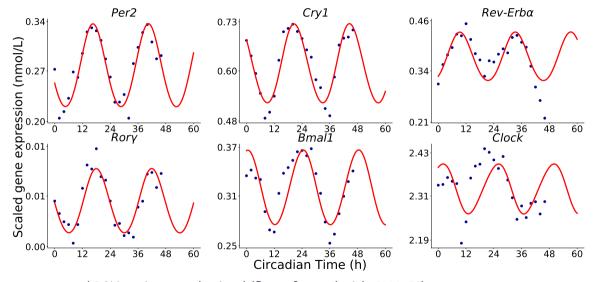
Computing residuals *y*: acquisition of clock parameters and protein levels



$$\frac{dx^{vivo}}{dt} = f(z)V_{\text{max}}\text{Transc}(M, \gamma) - \alpha x^{vivo}$$

- *In vitro* setting $\implies f(z)$ constant
- Fit model on in vitro hepatocytes data (Atwood et al., PNAS, 2011)

Clock model fit on in vitro hepatocytes data



 $\implies \alpha, \gamma$ and M(t) estimates obtained (fit performed with CMA-ES)

Multiple trajectories for stronger inference results

$$f(\bar{\mathbf{z}}(t_i)) \approx \frac{\frac{\Delta \bar{\mathbf{x}}^{vivo}(t_i)}{\Delta t_i} + \alpha \bar{\mathbf{x}}^{vivo}(t_i)}{\mathsf{Transc}(\mathbf{M}, \gamma)} := y(t_i) \qquad \text{(*)}$$

- α , γ and M are educated guesses...
- ...But are just estimates from an in vitro dataset

Multiple trajectories for stronger inference results

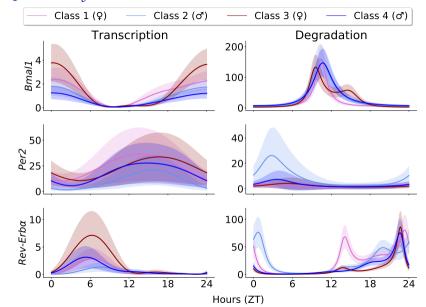
$$f(\bar{\mathbf{z}}(t_i)) \approx \frac{\frac{\Delta \bar{\mathbf{x}}^{vivo}(t_i)}{\Delta t_i} + \alpha \bar{\mathbf{x}}^{vivo}(t_i)}{\mathsf{Transc}(\mathbf{M}, \gamma)} := y(t_i) \qquad \text{(*)}$$

- α , γ and M are educated guesses...
- ...But are just estimates from an *in vitro* dataset

Solution:

- Perturbed clock model parameter vectors are sampled

Residual trajectories y



For each residual y, a linear model $\sum_{i} \beta_{i} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- ullet Different weights eta for a regulator from one class to another are allowed

For each residual y, a linear model $\sum_{i} \beta_{i} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- ullet Different weights eta for a regulator from one class to another are allowed

0.8 Food Intake (Class 1)

+ 0.3 Temperature

For each residual y, a linear model $\sum_{j} \beta_{j} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- ullet Different weights eta for a regulator from one class to another are allowed

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2) + 0.3 Temperature + 0.5 Activity

For each residual y, a linear model $\sum_{j} \beta_{j} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- **Different weights** β for a regulator from one class to another are allowed

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2) + 0.3 Temperature + 0.5 Temperature

For each residual y, a linear model $\sum_{j} \beta_{j} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- ullet Different weights eta for a regulator from one class to another are allowed

Need to account for the delay introduced by moving in different compartments

 \implies Integral regulators $Z_j(t) = \int_0^t z_j(s) ds$ are added: $z \leftarrow (z, Z)$

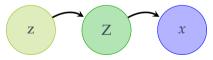
A regulator z_j and its integral Z_j are never found together in a model for all j

For each residual y, a linear model $\sum_{i} \beta_{i} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- **Different weights** β for a regulator from one class to another are allowed

Need to account for the delay introduced by moving in different compartments

$$\implies$$
 Integral regulators $Z_j(t) = \int_0^t z_j(s) ds$ are added: $z \leftarrow (z, Z)$



A regulator z_j and its integral Z_j are never found together in a model for all j

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2) + 0.9
$$\int$$
 Food Intake + 0.6 \int Food Intake

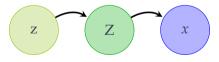
17

For each residual y, a linear model $\sum_{i} \beta_{i} z_{j}$ is fitted

- The active regulators of the fitted model should be the same classwise.
- **Different weights** β for a regulator from one class to another are allowed

Need to account for the delay introduced by moving in different compartments

$$\implies$$
 Integral regulators $Z_j(t) = \int_0^t z_j(s) ds$ are added: $z \leftarrow (z, Z)$

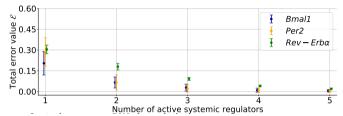


A regulator z_j and its integral Z_j are never found together in a model for all j

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2) + 0.4
$$\int$$
 Melatonin + 0.2 \int Melatonin

17

Control on gene transcription

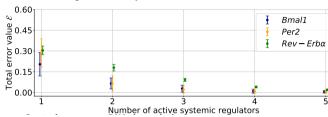


$$\mathscr{E}(y,\bar{z}) := \frac{1}{4n} \sum_{c=1}^{4} \sum_{k=1}^{n} \min_{\beta_{k}^{(c)}} \ell(y_{k}^{(c)},\bar{z}^{(c)},\beta_{k}^{(c)})$$

$$\ell(y_k^{(c)}, \bar{z}^{(c)}, \beta_k^{(c)}) := \frac{1}{N-1} \sum_{i=1}^{N-1} \left(y_k^{(c)}(t_i) - \sum_j \beta_{k,j}^{(c)} \bar{z}_j^{(c)}(t_i) \right)^2$$

Input/output normalized $\implies \mathscr{E}$ is an average % of unexplained variance

Control on gene transcription



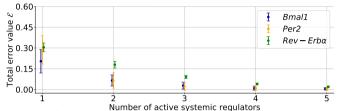
- Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erbα
- F-test for nested models concludes on 2-terms

 \implies No **linear** control of regulators on $\mathit{Rev-Erb}\alpha$ transcription

$$\mathcal{E}\left(y,\bar{z}\right) := \frac{1}{4n} \sum_{c=1}^{4} \sum_{k=1}^{n} \min_{\beta_{k}^{(c)}} \ell\left(y_{k}^{(c)},\bar{z}^{(c)},\beta_{k}^{(c)}\right)$$
$$\ell(y_{k}^{(c)},\bar{z}^{(c)},\beta_{k}^{(c)}) := \frac{1}{N-1} \sum_{i=1}^{N-1} \left[y_{k}^{(c)}(t_{i}) - \sum_{i} \beta_{k,j}^{(c)} \bar{z}_{j}^{(c)}(t_{i})\right]^{2}$$

Input/output normalized $\implies \mathscr{E}$ is an average % of unexplained variance

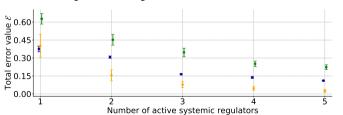
Control on gene transcription

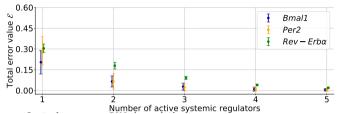


- ullet Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erblpha
- F-test for nested models concludes on 2-terms

 \implies No **linear** control of regulators on Rev- $Erb\alpha$ transcription

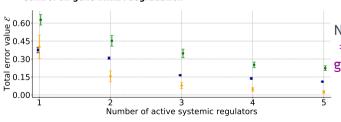
Control on gene mRNA degradation





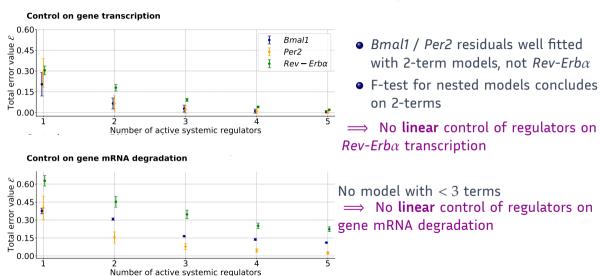
- ullet Bmal1 / Per2 residuals well fitted with 2-term models, not Rev-Erblpha
- F-test for nested models concludes on 2-terms
- \implies No **linear** control of regulators on *Rev-Erb* α transcription

Control on gene mRNA degradation



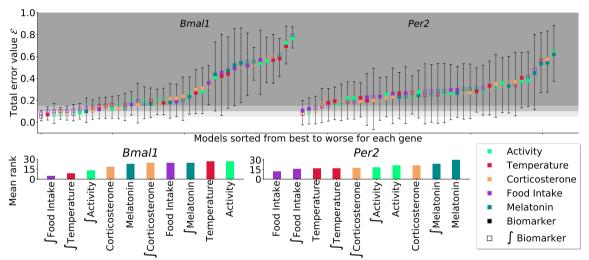
No model with < 3 terms

⇒ No linear control of regulators on gene mRNA degradation

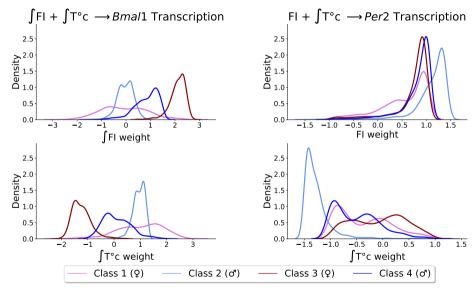


Focus on 2-term models for Transcription: 40 models

2-term models ranking



Classwise weights analysis for best 2-term models



Conclusion & Perspectives

Under all hypotheses:

- Food Intake / Toc main actors for transcription control: consistent with literature
- Linear control of studied systemic regulators on gene mRNA degradation unlikely

Conclusion & Perspectives

Under all hypotheses:

- Food Intake / T°c main actors for transcription control: consistent with literature
- Linear control of studied systemic regulators on gene mRNA degradation unlikely

Model learning approach:

- Integration of data at systemic and cellular level
- Knowledge encompassed in model, mechanistic predictions on unknown parts
- Handle large number of variables within the sparse multi-task regression framework

Conclusion & Perspectives

Under all hypotheses:

- Food Intake / T°c main actors for transcription control: consistent with literature
- Linear control of studied systemic regulators on gene mRNA degradation unlikely

Model learning approach:

- Integration of data at systemic and cellular level
- Knowledge encompassed in model, mechanistic predictions on unknown parts
- Handle large number of variables within the sparse multi-task regression framework

What's next:

- Integration of best regulator models back in the ODEs
- Validation on human data

Want to know more? Paper accepted at Bioinformatics (ECCB21 Proceedings)!

Julien Martinelli, Sandrine Dulong, Xiao-Mei Li, Michèle Teboul, Sylvain Soliman, Francis Lévi, François Fages, and Annabelle Ballesta. *Model learning to identify systemic regulators of the peripheral circadian clock*. working paper or preprint. Mar. 2021. url: https://hal.inria.fr/hal-03183579.