Model learning to identify systemic regulators of the
peripheral circadian clock
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The circadian timing system
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@ A master clock acting as an autonomous = 24h-oscillator synchronised by external cues
@ This master clock entrains the peripheral clocks in the cells via physiological signals

@ The peripheral clock induces oscillations in key intracellular processes



Chronotherapy
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Oxaliplatin chronotoxicity in mice. Boughattas et al,, Cancer Research, 1989

Chronotherapy: optimal drug-time delivery based on the organisms circadian rhythms

Mouse: Chrono toxicity/efficiency for 40/28 drugs (Dallman et al, Trends Mol Med., 2016)



Inter-patient variability

Humans: 5-fold reduction of severe toxicities, doubled antitumoral response
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Inter-patient variability

Humans: 5-fold reduction of severe toxicities, doubled antitumoral response
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Large inter-patient variability — Need for personalized optimal timing



Collecting data at the patient level with eHealth platforms
Picado platform: remote data collection = precision medicine
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Collecting data at the patient level with eHealth platforms
Picado platform: remote data collection = precision medicine

MULTIDOM
38 patients
pancreatic
cancer
FOLFIRINOX
RGDS
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Coﬁtiéo/jl\ﬁe/atanin
Statistical models untrainable = Mechanistic models

@ Accounts for the lack of data

@ Available data in mouse can be used for human: multi scale modelling
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Global picture
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Mouse class systemic regulators data
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Mouse class gene expression data
Class 1 (?) Class 2 (o) Class 3 (?) Class 4 (&)

o S

TN

N

Gene expression (nmol/L)
Per2
o =

Rev-Erba

T —

0 6 12 18 24 0 6 12 18 24 0
Hours (ZT)

o

6 12 18 24 0 6 12 18 24

RT-qPCR acquired data. Gaussian process regression smoothing



A new model of the cellular circadian clock
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A new model of the cellular circadian clock

Ordinary differential equations
PERc
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A new model of the cellular circadian clock
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Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators z on gene transcription

dxvivo |
dt = f(Z)VmaXTranSC(M, ‘)/) — awio
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Incorporating systemic regulators action on gene expression

Hypothesis 1: Multiplicative control of systemic regulators z on gene transcription

dxvivo |
dt = f(Z)VmaXTranSC(M, ‘)/) — a,wio
dxviva N axviyg
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L=t e
/@ Transc(M, y)

Hypothesis 2: Multiplicative control of systemic regulators z on gene mRNA degradation
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Data for x = Bmall, Per2 and Rev-Erba



Systemic regulators identification as a regression problem
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Systemic regulators identification as a regression problem

| | > Mouse class dataz x

Axviw(ti)
At
Transc(M, y)

+ ax’o(t;)

e f(z(t)) = =y(t)

17 Residuals

Learn f using the samples {(z(ti),y(ti)) ,i={1,..,N —1}}

Explicit form | T_ Systemic Regulators

(unknown)

Learning f usually boils down to solve

N-1 . 2
argmin D (y(fi) _f(z(ti)))
fes i=1

For this study, .7 will be the space of linear functions.



Computing residuals y: acquisition of clock parameters and protein levels
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Clock model fit on in vitro hepatocytes data
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Multiple trajectories for stronger inference results
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® o,y and M are educated guesses...

@ ..But are just estimates from an in vitro dataset



Multiple trajectories for stronger inference results
A—vim)(ti) .
S axt()

f(t) ~ Transc(M, y)

=yt) )
® o,y and M are educated guesses...
@ ..But are just estimates from an in vitro dataset
Solution:
@ Perturbed clock model parameter vectors are sampled

@ 1 =2000 new residual trajectories y are generated from the perturbed clocks



Residual trajectories y

—— Class 1(9) —— Class 2 (&) —— Class 3 (?) —— Class 4 (&)
Transcription Degradation
200 \
:.4
©
100
)
0 0
40
20 7
0
5 10 100
2
w
s 5 50
(U]
29
0 0

18

24

0 6 12 18 24

Hours (ZT)



Linear regression
For each residual y, a linear model Z Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.

e Different weights  for a regulator from one class to another are allowed
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Linear regression
For each residual y, a linear model E Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.
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Linear regression
For each residual y, a linear model Z Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.
e Different weights  for a regulator from one class to another are allowed

Need to account for the delay introduced by moving in different compartments

= Integral regulators Z;(t) = [ z;(s)ds are added: z < (z,Z)

T 0

Aregulator z; and its integral Z; are never found together in a model for all j
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For each residual y, a linear model Z Bjz; is fitted
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Linear regression
For each residual y, a linear model E Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.

e Different weights  for a regulator from one class to another are allowed
Need to account for the delay introduced by moving in different compartments

= Integral regulators Z;(t) = [ z;(s)ds are added: z < (z,Z)

T 0

Aregulator z; and its integral Z; are never found together in a model for all j

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2)
+ 0.4 fMelatonin +0.2 f Melatonin



Total error as a function of the number of involved regulators
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Total error as a function of the number of involved regulators
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Total error as a function of the number of involved regulators
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Focus on 2-term models for Transcription: 40 models



2-term models ranking
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Classwise weights analysis for best 2-term models
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Conclusion & Perspectives

Under all hypotheses:
@ Food Intake / T°c main actors for transcription control: consistent with literature

@ Linear control of studied systemic regulators on gene mRNA degradation unlikely
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Conclusion & Perspectives

Under all hypotheses:
@ Food Intake / T°c main actors for transcription control: consistent with literature

@ Linear control of studied systemic regulators on gene mRNA degradation unlikely

Model learning approach:
@ Integration of data at systemic and cellular level

@ Knowledge encompassed in model, mechanistic predictions on unknown parts

@ Handle large number of variables within the sparse multi-task regression framework

What's next:
@ Integration of best regulator models back in the ODEs

@ Validation on human data
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Want to know more? Paper accepted at Bioinformatics (ECCB21 Proceedings)!
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