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a b s t r a c t

Scheduling anticancer drug administration over 24 h may critically impact treatment success in a
patient-specific manner. Here, we address personalization of treatment timing using a novel mathemat-
ical model of irinotecan cellular pharmacokinetics and –dynamics linked to a representation of the core
clock and predict treatment toxicity in a colorectal cancer (CRC) cellular model. The mathematical model
is fitted to three different scenarios: mouse liver, where the drug metabolism mainly occurs, and two
human colorectal cancer cell lines representing an in vitro experimental system for human colorectal can-
cer progression. Our model successfully recapitulates quantitative circadian datasets of mRNA and pro-
tein expression together with timing-dependent irinotecan cytotoxicity data. The model also
discriminates time-dependent toxicity between the different cells, suggesting that treatment can be opti-
mized according to their cellular clock. Our results show that the time-dependent degradation of the pro-
tein mediating irinotecan activation, as well as an oscillation in the death rate may play an important role
in the circadian variations of drug toxicity. In the future, this model can be used to support personalized
treatment scheduling by predicting optimal drug timing based on the patient’s gene expression profile.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mammalian physiological and behavioural processes follow a
daily rhythm of approximately 24 h, which is regulated by the cir-
cadian system. In mammals, the suprachiasmatic nuclei (SCN), a
central pacemaker located in the brain, account for organismal
entrainment to the geophysical time, primarily via light cues. The
SCN pass on time information, in the form of physiological signals,
to peripheral clocks, located in each nucleated cell of the organism.
The cellular circadian clock is a molecular machinery of intercon-
nected transcriptional-translational feedback loops that produces
sustained 24 h-oscillations [1]. Via the regulation of clock-
controlled genes (CCGs), the circadian clock controls the timing
of multiple cellular and organismal processes, including the cell
division cycle, DNA repair or energy metabolism and the immune
system [2-4]. Large inter-individual differences have been
observed in several endpoints aiming to measure circadian
rhythms, from chronotype questionnaires to melatonin onset tim-
ing or circadian biomarkers measured by wearables [5]. Sex
appears as a major determinant of circadian rhythms, as women,
in general, have higher-amplitude behavioural rhythms than men
[6]. The disruption of circadian rhythms leads to mis-regulation
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in the timing of cellular processes and organ functions, and accu-
mulating evidence points to a negative impact on human health.
Again, sex differences exist, as women tend to be more resilient
to circadian disruption as compared to men [6]. Several patholo-
gies have been associated to the mis-regulation of the circadian
system including cardiovascular diseases, metabolism disorders
and cancer [7,8].

Also, most physiological processes involved in the transport and
metabolism of xenobiotics are regulated in a time-dependent man-
ner, which impacts the pharmacokinetics (PK) of numerous drugs
that may vary largely depending on the administration timing
[9,10]. On the other hand, several drugs target circadian regulated
genes. Recent findings showed that>50% of the top 100 best-selling
drugs in the United States target products of circadian genes [11].
Thus, timing drug administration may also impact drug pharmaco-
dynamics (PD) and eventually treatment outcome. In the field of
cancer management, several clinical studies have addressed the
effect of timing medications for treatment optimization – chron-
otherapy – with promising results [8,12-14]. Giacchetti and collea-
gues reported data from three international Phase III clinical trials
involving 842 patients (345 females and 497 males) treated with
5-fluorouracil, leucovorin and oxaliplatin administered as chrono-
modulated or conventional infusions [15]. The results showed that
male patients lived significantly longer on chronomodulated che-
motherapy compared to conventional chemotherapy. Yet, while
this specific chronomodulated administration scheme showed a
beneficial trend in males, leading to an increase in overall survival
(OS), a decrease in OS was reported in females undergoing this
chronomodulated regimen, in comparison to a control group
receiving the conventional therapy [15]. Moreover, a recent inter-
national clinical trial concluded that irinotecan hematological
and clinical toxicities were lower for early morning administration
in male and for early afternoon infusion in female colorectal cancer
patients receiving the drug in combination with 5-fluorouracil and
oxaliplatin [16]. Such results highlight the need for more research
in this field to understand inter-patient discrepancies and enable
safe and efficient clinical application of chronotherapy. Given the
reported alterations in circadian gene expression profiles of cancer
cells [17], administering anticancer treatment at a time of least
toxicity to healthy tissues is likely to provide a benefit to healthy
cells while still targeting the cancer cells. In addition, by timing
treatment, it would be possible to increase the tolerated dose, or
prevent treatment discontinuation, to achieve a more effective
toxicity to the tumor cells [8].

Chronotherapy might be more efficient when adapted to the
internal time of the patient. Yet, the definition of a single internal
time is challenging since the circadian timing system involves mul-
tiple inter-connected central and peripheral oscillating processes
[18]. We suggest to base chronotherapy individualization on the
patient’s circadian profiles of selected genes including core-clock
genes and genes involved in drug pharmacology. Several patient-
friendly methods for measuring clock gene expression using saliva
or blood sampling have been recently validated in the clinics [18].
Such patient datasets, combined with mathematical modeling and
machine learning, may allow to predict the times of least toxicity
to healthy tissues, and optimal antitumor efficacy for an individual
patient [18]. In particular, computational models representing the
chronopharmacology of a specific drug can help to predict therapy
time windows of decreased toxicity and optimal efficacy [8,18].
Such models can also be optimized for a given patient and used
to generate personalized treatment timing indications. In the past
years, several ODE (ordinary differential equation) models have
been developed, which either aim to model the circadian clock net-
work [19–26] or the biochemical and biophysical interplay
between the circadian timing system and a given drug [27,28].
These chronoPK-PD models consider both the impact that the
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organism has on the drug, i.e. its PK, as well as the impact of the
drug on the organism, i.e. its PD, and further include the control
of the circadian time system on these processes.

Currently, there is a gap between existing mathematical models
for the core-clock network and mathematical models of drug PK-
PD. Here we aimed at merging the core-clock network with a
model of the chronoPK-PD of irinotecan, an anticancer drug widely
used against digestive malignancies. We generated a new mathe-
matical model, which enables predictions of the cytotoxicity tim-
ing for irinotecan having as an input the circadian gene
expression of a set of core clock and irinotecan metabolism-
related mRNAs. For that, we refined and combined two previously
published ODE mathematical models, a core clock from Relógio et
al. [23] and a model of irinotecan chronoPK-PD from Ballesta et al.
[27,28], which have been successfully used for simulating the
mammalian core clock and the time-dependent cytotoxicity of iri-
notecan, respectively. The core-clock model was refined using
newly available quantitative circadian datasets of gene and protein
expression in the liver of C57Bl6 male mice. Representing the clock
of the liver is important in view of predicting the drug metabolism
that mainly occurs in this organ in the whole-body scenario
[29,30]. To connect it with the PK-PD model, we extended the
transcription-translation network of the core clock with a set of
irinotecan-related genes. We fitted our new clock-irinotecan
model with transcriptomic data from an in vitro colorectal cancer
(CRC) experimental progression model and carried out time-
dependent irinotecan treatment in both cell lines across 24 h.
The CRC in vitro progression model includes two cell lines derived
from the primary tumor (SW480) and from a metastasis site
(SW620) of the same patient, which are known to display different
circadian profiles [31].

Our mathematical model for timing of irinotecan cytotoxicity
nicely reproduced mRNA circadian expression, as well as experi-
mental data obtained via longitudinal monitoring of cytotoxicity
for both cell lines. In addition, we found that particular parameters
associated with BMAL1 and CLOCK (BMAL1 degradation rate, CLOCK
activation rate, cytosolic BMAL1 degradation rate), showed high
impact on drug toxicity emphasizing the relevance of the core
clock for irinotecan PK-PD. Finally, we proposed possible candi-
dates for molecular biomarkers of irinotecan chronotherapy, which
were the prodrug activation enzyme and the enyzme responsible
for deactivation of SN-38, the irinotecan main metabolite.
2. Material and methods

2.1. Cell culture

SW480 (ATCC� CCL-228TM), SW620 (ATCC� CCL-227TM) cell lines
were maintained in Dulbecco’s Modified Eagle Medium (DMEM)
low glucose (Lonza, Basel, CH) culture medium supplemented with
10% fetal bovine serum (FBS) (Life technologies, Carlsbad, CA, USA),
1% penicillin–streptomycin (Life technologies), 2 mM Ultragluta-
mine (Lonza) and 1% HEPES (Life technologies). Cells were incu-
bated at 37 �C in a humidified atmosphere with 5% CO2. The
SW480 cell line originated from a surgical specimen of a primary
tumour of a moderately differentiated colon adenocarcinoma
(Dukes’ type B) of a 51-year-old Caucasian male (blood group A,
Rh + ). The SW620 cell line was derived from a lymph node metas-
tasis (Dukes’ type C) taken from the same patient one year later.
2.2. shRNA-mediated knockdown

For the knockdown of BMAL1, a TRC lentiviral shRNA glycerol
set (Dharmacon, Lafayette, CO, USA) specific for BMAL1 was used
consisting of five individual shRNAs. The construct that gave best



Table 1
Primers used for the RT-qPCR analysis of SW480 and SW620 cell lines. The primers for
mouse can be found in the original publication [32], in the Supplementary File S2.

Primer Sequence (50->30)

PER2 forward AGCCAAGTGAACGAACTGCC
PER2 reverse GTTTGACCCGCTTGGACTTC
NR1D1 forward CTCCATCGTCCGCATCAATC
NR1D1 reverse AACGCACAGCGTCTCG
ARNTL forward AACCTTCCCACAGCTCACAG
ARNTL reverse CTCTTTGGGCCACCTTCTCC
TOP1 forward CCAAGCATAGCAACAGTGAAC
TOP1 reverse GAGGCTCGAACCTTTTCCTC
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knockdown efficiency was determined by gene expression analysis
and used for further experiments.
2.3. RNA extraction

Total RNA isolation was performed using the RNeasy Mini kit
(Qiagen, Venlo, NL) according to the supplier’s manual. Medium
was discarded and cells were washed twice with PBS and lysed
in RLT buffer (Qiagen) prior to the purification procedure. RNA
was eluted in 30 lL RNase-free water. Final RNA concentration
measurement was performed using a Nanodrop 1000 (Thermo
Fisher Scientific).
2.4. c-DNA and synthesis RT-qPCR

For Real Time quantitative PCR (RT-qPCR) analysis, the
extracted RNA was reverse transcribed into cDNA (4 ng/ml) using
random hexamers (Eurofins MWG Operon, Huntsville, AL, USA)
and Reverse Transcriptase (Life technologies). RT-qPCR was per-
formed using SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad Laboratories, Hercules, CA, USA) in 96-well plates (see Table
1 for list of primers used). Human GAPDH (QuantiTect Primer, Qia-
gen) was used as reference housekeeping gene due to its high
abundance and to the lack of circadian oscillations, as confirmed
by a cosinor analysis carried out in microarray and RNA-seq data
for SW480 cells (Supplementary Fig. 2d).

The qPCR reaction was performed using a CFX Connect Real-
Time PCR Detection System (Biorad). Relative gene expression
was calculated using the 2-DDCt method [33]. Biological and techni-
cal replicates were included into the analysis.
2.5. Time-dependent treatment with irinotecan

SW480 and SW620 cells were seeded in 96-well plates at 5000
cells and total volume 150 mL per well. The cells were synchronized
by medium change at 4 different time points (6 h, 12 h, 18 h and
24 h) before treatment with 2 mM of irinotecan. Cells (at 60% con-
fluence at the start of measurements) were incubated at 37 �C in a
humidified atmosphere with 5% CO2. The corresponding untreated
control condition was measured in parallel with the treated cells.
Cytotoxicity was evaluated in real time with the IncuCyte� S3
Live-Cell system. Abundances of dead cells are measured experi-
mentally as red florescent objects. Cytotox dyes are inert, non-
fluorescent and do not enter viable cells, when added to the cell
culture. In dying cells, the membrane integrity is lost, the cytotox
dye enters the cells and fluorescently labels the nuclei. To prevent
dependence on initial conditions, the cytotoxicity curves are
shifted along the cytotoxicity axis such that the first value of all
curves overlaps with the control curve. The cells are then identified
and quantified by the appearance of red labelled nuclei.Because
confluency saturated after 84.5 h for the control conditions, the
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analysis was restricted to 84.5 h, compare with Supplementary
Fig. 7.

2.6. Omics data

The models were fitted to microarray time series data of 24 h
sampled with an interval of 3 h for the SW480 and SW620 cells
and of 48 h sampled with an interval of 2 h for the liver, which
was scaled to concentrations based on RNA-seq data. The microar-
ray data and RNA-seq data for liver tissue was published by Zhang
et al. 2014, accession numbers GSE54650 and GSE54652 [11]. For
the SW480 and SW620 cells, the microarray time series data was
published by El-Athman et al. 2018, accession number E-MTAB-
5876 [34], and the RNA-seq time series data was published by
El-Athman et al. 2019, accession number E-MTAB-7779 [35]. To
relate the microarray data with concentrations, the following steps
were done for each gene separately. RNA-seq transcript data was
used to calculate the temporal mean of the expression in TPM,
which was then converted into mean concentrations in mol/L by
a simple rescaling, see Supplementary Information for details.
The microarray data was first unlogged (2values) as the data was
given in fold change. Then the data was rescaled such that its mean
expression matched that of the RNA-seq derived mean concentra-
tion, i.e. for a time series � of the original microarray data, we used
C * 2x/less than2x>, where < . > denotes a temporal mean, and C is
the concentration calculated for this gene based on the RNA-seq
data. For gene families, genes with good oscillations were selected
as representative gene for the gene family, as denoted in the
figures.

2.7. Mathematical models

Model equations and parameters of the core clock are listed in
the Supplementary Information, Supplementary Equations
(1.1–18) and Supplementary Table 2, model equations and para-
meters of the clock-irinotecan model are listed in Supplementary
Equations (3.1–30) and Supplementary Table 6. Parameter opti-
mization was done using the evolutionary algorithm CMA-ES[36].
Computations for the core clock were carried out on a laptop with
i5 2.9 gHz dual core processor using Python’s pycma for the opti-
mization and Python’s scipy.integrate.odeint for the numerical
integration (method: lsoda, relative tolerance = absolute toler-
ance = 10-12). Computations for the clock-irinotecan network were
carried out on a compute cluster with the same Python packages.
Model fits are restricted to oscillating mRNAs, with a minimum
relative amplitude of 5%, i.e. (max–min)/max > 0.05 for each gene
expression time series. The fit of the clock-irinotecan network uses
the same algorithm and constraints as the core-clock model, see
Supplementary Information. The cost function is extended to
account for the additional genes in the network.

The model variables representing proteins relevant for irinote-
can PK-PD, i.e. UGT, CES, ABCB and ABCC, do not regulate other
genes’ expression within our transcription-translation network
and are thus not constrained by the available experimental data
used for the model fit. Maximal protein concentration for UGT,
CES, ABCB and ABCC are scaled to the maximal concentrations used
in the original model by Dulong et al. 2015 [28]. Hence, the
transcription-translation network predicts toxicity based on the
estimated relative amplitude and phase of the protein oscillations,
and formerly determined mean absolute levels. The model of
Dulong et al. 2015 [28] explicitly involves ABCG2, which is in our
case replaced by the dynamical variable ABCC with an appropriate
rescaling. The existing model of irinotecan chronoPK-PD uses pro-
tein dynamics as inputs to ultimately predict irinotecan toxicity.
We replaced the cosine fit with the dynamics that result from
the clock-irinotecan network.



Table 2
Resources for the data used in the current study.

Dataset Organ / Cell line Used for model Acquisition technique Accession
number

Narumi et al. 2016 [32] C57B16 male mouse liver (WT
mouse and Bmal1-/-)

Liver core-clock mRNA: RT-qPCR
proteins: mass spectrometry NA

Zhang et al. 2014 [11] C57B16 male mouse liver Liver transcription-
translation network

mRNA: microarray and RNA-seq GSE54650 and
GSE54652

Wang et al. 2017 [43] C57B16 male mouse liver Liver core-clock Nuclear proteins: mass spectrometry E-MTAB-5876
El-Athman et al. 2018 [34] SW480 / SW620 human CRC cell

lines
CRC core-clock CRC full
model

mRNA: microarray E-MTAB-7779

El-Athman et al. 2019 [35] SW480 / SW620 human CRC cell
lines

CRC core-clock CRC full
model

mRNA: RNA-seq E-MTAB-7779

In this publication SW480 / SW620, control and
siRNA Bmal1

CRC core-clock CRC full
model

mRNA: RT-qPCR NA

Dulong et al. 2015; Ballesta
et al. 2011 [27,28]

Caco-2 human colorectal cancer
cell line

CRC full model CPT11 and SN38 cellular PK: HPLC
TOP1 activity: DotBlot
CPT11 and SN38 cytotoxicity: viability assays

NA

In this publication SW480 / SW620 CRC full model CPT11 cytotoxicity NA
Zheng et al. 2019 [42] C57B16 male mouse liver Liver core-clock Cytoplasmic and nuclear proteins CLOCK and BMAL

abundance: immunoprecipitation
NA

Aryal et al. 2017 [46] C57B16 male mouse liver Liver core-clock Cytoplasmic proteins PER and CRY: immunodepletion NA
Schwanhäusser et al. 2011

[47]
Mouse fibroblasts NIH3T3 Liver core-clock mRNA transcription rates: RNA-seq SRA030871
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For the cell line Caco-2 (cell line derived from a human colorec-
tal adenocarcinoma), the PK-PD model was fitted to cell death fol-
lowing irinotecan treatment [27,28]. To fit the circadian variation
in toxicity, we change the PK-PD model output by replacing the
equation modelling apoptosis with two equations for the time ser-
ies of alive and dead cells, see Supplementary Equations (3.29)
and (3.30). As it turns out, this current model is not sufficient to
reproduce the large timing-related differences in cytotoxicity
observed experimentally, likely due to the small relative ampli-
tudes of the protein oscillations, which in our model, as defined
by Supplementary Equations (3.1) to (3.19), cannot be larger than
the fitted mRNA oscillations. To relax this constraint, we replaced
constant protein degradation for UGT, CES, ABCB and ABCC with
oscillatory degradation in the final model [37].

For convenience, acrophases are rescaled to the range from 0 to
1 instead of 0 to 2p.

2.8. Statistical analysis

The experimental toxicity profile is fitted by a harmonic regres-
sion using Matlab, significance is set to p � 0.05 [18]. For the cyto-
toxicity data, the Area Under the Curve (AUC) is calculated using
the linear trapezoidal method, using as weights wk a vector with
n elements (where n is the number of time points considered), with
1 h for the first and last element, and 2 h for the other elements,
with the error associated calculated as varðAUCÞ ¼
Pn�1

k¼0wk
2SEMk

2, where SEMk is the standard error at the time point
related to time point k, and var is the variance of the AUC calcu-

lated as AUC ¼ Pn�1
k¼0wkxk.
3. Results

The effect of a drug results from an intricate interplay between
its metabolites and the organism, which is under circadian control.
Regarding the anticancer agent irinotecan, multiple genes and pro-
teins involved in its PK-PD are directly or indirectly regulated by
the cellular core clock. The aim of the study was to design a math-
ematical model combining the core clock and irinotecan PK-PD-
related elements to investigate possible cellular biomarkers pre-
dicting irinotecan chronotoxicity rhythms (Fig. 1a, top). This model
was developed and calibrated for three biological systems: the
healthy mouse liver, and two cell lines derived from human color-
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ectal cancer (CRC) (Fig. 1a bottom). The combined model was
trained for the CRC cell lines using circadian datasets of mRNA
levels and with experimental results on time-related irinotecan
cytotoxicity. We first present a quantitative version of the core-
clock model (Fig. 1b), followed by its extension to account for
the clock-controlled regulation of genes involved in irinotecan
PK-PD. Finally, this model was connected to a representation of iri-
notecan chronoPK-PD.

3.1. A quantitative model of the core clock in mouse liver

To investigate the interactions between the circadian clock and
irinotecan cellular PK-PD, we started by designing a quantitative
model of the cellular core clock (Fig. 1b). We refined the previously
published ODE model by Relógio et al. [23], which represents the
molecular mechanisms of the core clock at the cellular level based
on experimental data for the mammalian SCN. Clock gene paralogs
and isoforms were merged into the following model variables for
mRNA elements: Per (Per1, Per2, Per3), Cry (Cry1, Cry2), Ror (Rora,
Rorb, Rorc), Rev-Erb (Rev-Erba, Rev-Erbb) and Bmal1. We applied
the same principle for model variables representing proteins and
protein complexes. The dynamical variable CLOCK/BMAL repre-
senting the CLOCK/BMAL1 dimer is assumed to activate the tran-
scription of the core-clock genes Rev-Erb, Ror, Per, and Cry and
the PER/CRY complex to inhibit this transcriptional activity. The
model includes two main negative feedback loops. The first one
involves the self-inhibition of the dynamical variables Per and
Cry through the inhibition of CLOCK/BMAL by the PER/CRY com-
plex. In addition, REV-ERB inhibits the transcription of Cry, thus
inhibiting its own inhibition through the regulation of PER/CRY.
The second feedback loop is induced by the self-repression of the
dynamical variable Bmal through the activation of its repressor
REV-ERB by CLOCK/BMAL. On the contrary, ROR, which is tran-
scriptionally activated via CLOCK/BMAL, acts positively on Bmal
regulation.

The Relógio et al. model differentiated between phosphorylated
and unphosphorylated PER proteins [23]. However, in the absence
of time-dependent quantitative data on PER phosphorylation, we
opted to simplify the PER/CRY (PC) loop and to merge the phos
phorylated/unphosphorylated variables (Fig. 1b). Similarly, the
equations for the dynamical variables CLOCK/BMAL and PER/CRY
cytoplasmic complexes originally included both a term for com-
plex dissociation into free proteins and for complex degradation,



Fig. 1. The action of the drug irinotecan involves the core clock and a set of clock-regulated genes, experimentally assessable in different cell types. a Workflow of the
clock-irinotecan model construction. Irinotecan induces DNA damage and potentially cell death via its interaction with clock-controlled proteins. Mathematical models were
fitted to different datasets in healthy mouse liver, and in human cancer cell lines. b Network representation of the core-clock model. Inhibitory interactions are presented in
red with flat arrowheads, activating interactions in green with pointed arrowheads, and complex formation in black.

Fig. 2. Best fit of the quantitative core-clock model to mRNA and protein circadian datasets in the mouse liver. a mRNA expression for core-clock elements in pmol/L. b
Protein levels for core-clock elements in pmol/L. Model simulation (orange lines), experimental data used for calibration (black circles). Depicted are mean values (n = 2
biological replicates) ± SEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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which were not identifiable from the available data so that the
degradation terms were removed (Supplementary Information,
Section 1).

We further refined the core-clock model to represent the core
clock in organs relevant for irinotecan pharmacology, in particular
the liver, where the drug is processed. The Relógio et al. model did
not explicitly consider Clock given its lack of rhythmicity in the SCN
[38]. However, this is not the case in the liver [32]. Moreover,
CLOCK/BMAL1 is a key transcriptional regulator of genes involved
in the irinotecan network [39,40]. Thus, we expanded the initial
model by explicitly including Clock as follows. Similarly to the
dynamical variable Bmal, Clock transcription is assumed to be posi-
tively regulated by ROR and negatively impacted by REV-ERB [41].
The cytoplasmic protein CLOCKC dimerizes with the dynamical
variable BMALC and translocates to the nucleus to form the hetero-
dimer complex CLOCK/BMALN. The dynamical variable CLOCKC

representing the cytosolic CLOCK protein is assumed not to be able
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to enter the nucleus, as it was not detected in the nucleus of cells
not expressing Bmal1 [42]. Of note, BMAL1 and CLOCK nuclear pro-
tein expressions shared the same circadian phase and amplitude
experimentally, suggesting that both species exist mostly as
dimers in the nucleus [43] (Fig. 1b). One last modification was
made to the model structure to increase the accuracy of cyto-
plasm/nucleus transport terms. The equations now account for
the ratio between the compartment volumes to ensure that the
quantity of matter is conserved during transport (Supplementary
Information, Section 1.1.5). The cytoplasm/nucleus volume ratio
was set for mouse hepatocytes to 14 [44].

Our new core-clock model allows to quantitatively simulate
gene and protein levels, expressed in mol/L, thus allowing for
the fitting of quantitative datasets informing on absolute concen-
trations (Table 2). Parameter estimation was done using the time
series data reported by Narumi et al. [32] (Supplementary Infor-
mation, Section 1.3.4). Starting from the Relogio et al. model, we
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performed a linear change of variables, mapping the original
model variables to their scaled versions with respect to the max-
imum of the observed data (Supplementary Information, Sec-
tion 1.3.2). The obtained scaled parameter values were then
used as an initial guess for the subsequent parameter estimation
procedures.

The liver dataset also included protein expression for Bmal1-/-

mice [32]. Assuming that Bmal1 knockout (KO) led to a loss of oscil-
lations in the clock [45], this data could be seen as a glance at the
system at steady state. This enabled us to derive functional rela-
tionships to compute three transcription rate parameters as a func-
tion of the KO mice data and other parameters (Supplementary
Information, Section 1.3.3), thus decreasing the number of para-
meters to estimate. This led to a simplification in the parameter
estimation. We further reduced the number of parameters by
assuming that Hill power coefficients were equal for all activators
(parameter b) and all inhibitors (parameter c) of the transcription
across genes. This led to a decrease of 8 parameters to be estimated
while producing next to no change in the goodness of fit as
expected from the argument of unidentifiability. Only Cry kept
separated Hill coefficients due to its transcription being regulated
by 3 species (the dynamical variables CLOCK/BMAL, PER/CRY and
REV-ERB). The final core-clock model has 18 state variables and
58 parameters to be estimated.

The parameter estimation procedures consisted in a numerical
minimization of a cost function, which was the sum of two terms
(Supplementary Information, Section 1, Supplementary Equa-
tion (1.28)). The first term is the least square error between the
data and the model’s simulation, while the second term accounts
for biological constraints. These constraints were derived from
co-immunoprecipitation experiments and provided bounds for
complex concentrations with respect to free protein concentra-
tions [42,46]. Additional constraints were specified on the bounds
of parameter search intervals including those of degradation or
transcription rates based on mRNA and protein half-lives and
levels [47]. Fig. 2 shows the model best-fit, which convincingly
reproduced the data (R2 = 0.86). Bmal1 and Clock mRNA model-
predicted profiles presented a similar phase but different mean
levels (5.3 and 19.5 pmol/L, respectively) and relative amplitude
(84% and 62% of the mean, respectively). Differences were also
observed at the protein level as free BMAL1 and CLOCK protein
mean levels were equal to 13.9 and 8.85 nmol/L respectively, with
relative amplitudes of 35% and 25%. These differences came as a
justification to the addition of the Clock gene into the core-clock
model.

Validation of the model was done using an external time course
dataset from mouse hepatocytes, which was not used for the
model design and calibration [43]. This study reports a phase
between 8.5 h and 10.8 h for the circadian rhythm of REV-ERB
nuclear expression and a relative amplitude of 98%, while the
model simulation for phase and relative amplitude were 9.7 h
and 90%, respectively. Similarly, for ROR nuclear expression, the
reported phase was 20.8 h, as compared to 21.1 h for model predic-
tions, and its relative amplitude was 80% as compared to 69% for
the model. Both predictions are in close agreement with the study
and serve as a validation of the model. For the other clock proteins,
as our model only tracked them as complexes in the nucleus, the
comparison to single-protein data was not possible. A subsequent
robustness analysis was performed by analyzing whether the
model could maintain sustained oscillations upon parameter per-
turbation. Gaussian noise was added to the best-fit parameter vec-
tor with a standard deviation of 10%, leading to oscillating
simulations in 73% of the cases, thus demonstrating the model
robustness (Supplementary Fig. 1).
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3.2. The clock model reproduces the expression profiles of core-clock
genes in CRC cell lines

To test our mathematical model in a colon cancer context, we
chose a well-known in vitro cellular model of CRC progression,
which includes two cell lines from the same patient (SW480,
SW620), derived from the primary tumour and from the metasta-
sis, respectively. We carried out a time course of 45 h (9 h � 54 h,
after synchronization) with a 3 h sampling interval, for the gene
expression analysis of PER2, REV-ERBa and BMAL1 via RT-qPCR, in
either control or shBMAL1 conditions. This dataset was combined
with microarray data for the expression of Cry, Ror and Clock in
order to calibrate the core-clock model for each of the CRC cell
lines (see Section 2.6). Quantitative mean concentration levels
expressed in mol/L for the clock genes of CRC cell lines were
derived from an already published RNA-seq transcriptomic dataset
[11]. Thus, in total, three datasets were combined for the calibra-
tion of the core-clock model for the CRC cell lines. The cyto-
plasm/nucleus volume ratio of the CRC cell lines was set to 5
(manual curation, using snapshots of SW480 and S620 cells from
Abdulrehman et al. [48], Fig. 2, the cytoplasm/nucleus ratio was
computed for each cell of the figure and an average value close
to 5 was found for both cell lines). The transcription-translation
network was assumed to be similar in either control or shBMAL1
conditions, yet with a single different parameter to account for
shBMAL1 activity. Accordingly, the RT-qPCR datasets obtained from
the control and shBMAL1 conditions were fitted simultaneously to
their respective models using the same set of parameter values
with the exception of BMAL1 basal transcription, which was
allowed to differ between both conditions (Supplementary Fig.
3). The shBMAL1 condition provided a view of a dampened circa-
dian clock, due to the knockdown of Bmal1, which induced a lo
wer activation power of the transcription factor
CLOCK/BMAL1. Upon model calibration, a 375-
fold reduction in the BMAL1 estimated basal
transcription rate was necessary to allow for a good
fit of both conditions. This demonstrates the ability
of the model to reproduce two different physiologi-
cal scenarios by tuning a single parameter.

Concerning the SW480 cell line, the model achieved an excel-
lent fit of the data (R2 = 0.75) (Fig. 3a, Supplementary Fig. 2a).
The fit for the SW620 was reasonable as well (R2 = 0.67), but lacked
a proper fit of CRY, ROR and CLOCK expression reported in the
microarray dataset (Fig. 3b, Supplementary Fig. 2b). Oscillations
of the core-clock genes, normalized to the mesor, showed larger
relative amplitudes in the healthy mouse liver than in CRC-
derived cell lines, with the circadian rhythms in SW620 cells being
largely dampened as compared to both other systems (Fig. 3c). The
peaks of BMAL1 mRNA levels of the best-fit model for mouse liver
and SW480 cells were aligned to allow for an in vitro/in vivo sys-
tems comparison. This highlighted a moderate phase shift of 5 h
(respectively 1 h) for PER2 (respectively REV-ERBa) between the
SW480 cell line and liver tissue. On the opposite, larger phase
delays were observed in the case of the SW620 cell line. Although
the three models represent different organs in different conditions,
their comparison exhibited a moderate agreement between the
clocks of the healthy liver and of the SW480 colorectal cancer cell
line, and large differences in terms of oscillations dampening and
phase differences in comparison to the clock of the SW620 meta-
static colon cancer cell line.

For most core-clock genes, the oscillations displayed a non-
cosine shape, with different intervals of high versus low gene
expression, see Fig. 3c and Supplementary Fig. 2c. Overall, the here



Fig. 3. Comparison of the core-clock models fitted to healthy mouse liver or human cancer cell lines. Best fit of the quantitative core-clock model to (a) the SW480 cell
line and (b) the SW620 cell line. Model simulation (line) against the RT-qPCR data used for calibration (dots), depicted as mean values (n = 3) ± SEM. c Comparison of the
model fit for liver (orange), SW480 (dark blue) and SW620 (sky blue). Bmal1 circadian phases were aligned for mouse liver and SW480 cell line and all gene expression
profiles were normalized to the mesor to allow for comparison. See Supplementary Fig. 2 for the other genes of the core clock model. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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presented core-clock model, based on cellular mRNA and protein
concentrations, reproduced the circadian gene expression profiles
for different sets of experimental data with good precision. Thus,
this model provided a reasonable starting point for the following
extension with irinotecan PK-PD-related genes.

3.3. Filling the gap: Connecting the core clock with irinotecan PK-PD
related genes

We extended the core-clock network with eight clock-
controlled genes relevant for irinotecan pharmacology as depicted
in Fig. 4, named in the following clock-irinotecan network. The ele-
ments added to the core-clock model are involved in irinotecan
metabolism, transport, and pharmacodynamics. Irinotecan is a
prodrug, which needs to be converted into its active metabolite,
SN-38, through the enzymatic activity of CES2 (Carboxylesterase
2) [49]. Subsequently, UGT1A1 (uridine diphosphate glucuronosyl-
transferase 1A1) regulates the conversion of SN-38 into its inacti-
vated form, SN-38G [29]. The ATP-Binding Cassette (ABC)
transporters ABCB1, ABCC1, ABCC2 and ABCG2 control the efflux
of these molecules out of the cells [50]. Central to irinotecan action,
SN-38 binds to the protein TOP1 (DNA topoisomerase 1), which
under normal conditions releases the supercoiling and torsional
tension of DNA by transiently cleaving and rejoining one strand
of the DNA, thereby controlling DNA topology during replication
and transcription. SN-38 binds to DNA-TOP1 complexes to stabilize
them. This leads to double-stranded breaks, erroneous transcrip-
tion and likely cell death [51,52]. Besides these proteins directly
relevant for irinotecan PK-PD, the clock-irinotecan network con-
tains three elements that act as transcription factors for the
above-mentioned genes, DBP (D site of albumin promoter (albu-
min D-box) binding protein), which is also considered as a core-
clock element, NFIL3 (Nuclear factor, interleukin 3 regulated),
and PPARa (Peroxisome proliferator-activated receptor alpha), a
regulator of liver lipid metabolism that also acts as transcription
factor for UGT1A1, which deactivates SN38 [53–55]. For the
clock-irinotecan network, we only consider the ABC transporter
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ABCB1 for irinotecan efflux and ABCC1 for SN38 and SN38G efflux
as ABCC2 showed less clear circadian oscillations and ABCG2 did
not appear in our RNA-seq data for the studied cell lines. The math-
ematical description of the clock-irinotecan network contains 39
equations and 115 parameters (Supplementary Table 5 and 6,
Supplementary Equations (3.1) - (3.19)). In the clock-irinotecan
network, oscillations are inherited from the core clock to genes
outside of the core-clock network via the CLOCK/BMAL1 complex,
ROR and REV-ERB. Accordingly, most connections go from the core
clock to the remaining elements. Only the inhibition of REV-ERB by
NFIL3 and the inhibition of BMAL1 by TOP1 provides feedback from
the irinotecan-related genes to the core clock [56,57]. From the
clock-irinotecan network fitted to experimental mRNA expression
data, we use the mRNA dynamics of UGT1A1, CES2, ABCB1 and
ABCC1 as an input to the protein dynamics and the PK-PD model
to predict irinotecan toxicity, see below.

The clock-irinotecan network was fitted to experimental time-
series datasets of mRNA concentrations [35], available for mouse
liver [11] and extracted from microarray and RNA-seq data for
CRC cell lines, see Section 2 for details. We fitted the clock-
irinotecan model to the temporal dynamics of mouse liver, as well
as to untreated SW480 and SW620 cells, which resulted in R2

scores of 0.72, 0.61 and 0.40, respectively (Fig. 5a-c), see Supple-
mentary Fig. 4 for an example with all genes. For acrophases and
relative amplitudes of the model fits see Supplementary Fig. 5. Per-
iods predicted by the model are 23.5 h for the liver (in accordance
with literature values for the circadian period of mice [58]), 21.6 h
for the SW480 cells and 28.8 h for SW620 cells (within the range of
previously reported values [17,31]).

A first version of the model assumed direct (i.e. one step) regu-
lation of irinotecan-related gene transcription by elements of the
core clock (Supplementary Equations (3.1) to (3.12), i.e. Fig. 4
without the grey boxes). While this restriction did not hamper
the fitting of most genes, the resulting best-fit curves for CES2
and ABCC1 mRNA levels were phase shifted compared to corre-
sponding microarray data in SW cell lines. This originated from
large phase delays between the clock-controlled regulators and



Fig. 4. Model of the interplay between irinotecan PK-PD and the core clock. Irinotecan treatment is simulated by a transcriptional-translational network that comprises
the core clock, irinotecan-relevant genes, and the PK-PD of irinotecan. Different types of interactions are represented among the elements of the network: inhibition (red
arrows with flat arrowhead) and activation interactions (green arrows); complex formation (black lines). Grey boxes represent post-transcriptional sub-networks necessary
for a model fit to the data. The double black line indicates equal concentrations between nucleus and cytoplasm, the double black line with arrowheads indicates CPT-11 and
SN-38 cellular transport inside and outside of the cell. All indicated molecular interactions are based on experimental evidence from a number of different sources and
corresponding references are provided in Supplementary Table 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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the expression of the regulated genes. For example, CES2, which
showed clear circadian oscillations in the SW480 cell line (harmo-
nic regression for a 24 h period results in p-value = 0.014, acro-
phase = 0.09 rad/2p, relative amplitude = 30%), peaked seemingly
before its two regulators, REV-ERBA and NFIL3, see Supplementary
Fig. 5. Thus, more intermediate elements might play a role in the
network. As a simple solution, we extended the model for CES2
clock-controlled transcription by a simple chain of post-
transcriptional modifications (compare Supplementary Equations
(3.13) to (3.19) and see Fig. 4, grey boxes). To cover the phase delay
between Ces2 and NFIL3 of 0.60 rad/2p (12.9 h, phase delay
between Ces2 and REV-ERBa is 0.85 rad/2p, i.e. 18.2 h), three uni-
directional activation steps, with one parameter for both activation
and degradation rates, were required. As ABCC1 showed a similar
problem, we added an analogue set of intermediate reactions for
ABCC1 transcription, for which two steps were sufficient, as the
phase delay with its regulators was smaller (phase delay between
Ces2 and NFIL3 of 0.39 rad/2p, i.e. 8.4 h, phase delay between Ces2
and REV-ERBa of 0.64 rad/2p, i.e. 13.8 h), see Supplementary Fig.
5. The fit of the additional genes does not reduce the quality of the
fit of the core-clock model, with R2 scores for the core clock of the
full fit of 0.93, 0.78 and 0.57 compared to 0.84, 0.67 and 0.52 for a
fit of only the core clock using the rescaled microarray data (see
Section 2), for liver tissue, SW480 and SW620 cell lines, respec-
tively. Lower R2 scores for the full fit likely result from the longer
optimization required for a good fit of all genes, as compared to
the optimization required for fitting only the core clock genes.
From liver to SW480 to SW620, the relative amplitude of the oscil-
lation was reduced for genes of the core clock and for genes
directly regulated by the core clock, whereas this amplitude reduc-
tion was relaxed for genes only indirectly controlled by the core
clock (Fig. 5d and Supplementary Fig. 5b).

From the fit of the gene expression data, we obtained a cali-
brated model computing clock and irinotecan-related mRNA circa-
dian rhythms. However, mRNAs need to be translated into proteins
that eventually interact with the drug. Hence, the link between the
5177
clock-irinotecan network and the PK-PD model for treatment toxi-
city was assumed via the protein dynamics and allows us to inves-
tigate the interplay between the circadian clock and irinotecan
action. We designed a new model of protein dynamics of UGT1A1,
CES2, ABCB1 and ABCC1, which are the inputs for the irinotecan
chronoPK-PD model (Supplementary Equation (3.3) with
(3.29)), replacing the forced cosine function utilized in the original
model by Dulong et al. 2015 [28]. The protein dynamics contained
a term for ptotein translation including mRNA levels computed by
the clock-irinotean model, together with a circadian process of
degradation as suggested for many proteins [37]. Magnitude,
amplitude and phase of the circadian degradation are fitted to
cytotoxicity data; the translation rate is set to 1 as protein abun-
dances are re-scaled in the PK-PD model, see Section 2 [37].

3.4. The full clock-irinotecan model recapitulates different
chronotoxicity rhythms for CRC cells

To investigate the putative effects of time-dependent treatment
in CRC, SW480 and SW620 cells were synchronized by media
change and treated with 2 mM of irinotecan at four different circa-
dian times (CT after synchronization: 6 h, 12 h, 18 h and 24 h). The
SW480 cell line exhibited a circadian cytotoxicity response to
treatment (harmonic regression with the period of the model fit,
p = 0.043 for SW480, see Supplementary Fig. 7; not significant
for SW620). SW480 cells showed the highest toxicity when irinote-
can was administered 24 h after synchronization, while the lowest
toxicity was observed when irinotecan was administered 12 h post
synchronization (acrophase of 0.006 ± 0.03 rad/2p, Fig. 6 c). The
differences in cytotoxicity values between different treatment time
points where higher in SW480 as compared to SW620 cells, which
resulted in larger circadian amplitudes for the SW480 toxicity
rhythm (Fig. 6b). Here it is relevant to notice that, in the absence
of treatment, the number of dead cells in SW480 cultures is higher
than for SW620 cell cultures (ratio of the area under the curve of
SW480 and SW620 is 2.46 ± 0.07, Fig. 6 a and d) pointing to cell



Fig. 5. Comparison of the fitted clock-irinotecan network for healthy mouse liver and human cancer-derived cells. Selected gene expression and fit of the clock-
irinotecan network for (a) mouse liver data, (b) SW480 and (c) SW620, all data without treatment. d Comparison of the model output when fitted to liver (orange), SW480
(dark blue) and SW620 (sky blue). Profiles were normalized to the mesor, and BMAL1 phases were aligned between mouse liver and the SW480 cell line to allow for
comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Fitting of the time-dependent treatment from human cancer cell lines. a Experimentally measured cytotoxicity curves, estimated by measuring red fluorescent
objects (see Methods), for SW480 cells that are untreated (Ctrl), or treated at indicated time points with irinotecan (6 h, 12 h, 18 h or 24 h after synchronization). Time is
aligned to treatment onset. b Best-fit of the extended PK-PD model (shown is the number of dead cells, the dynamical variable D of Supplementary Equation (3.31)) to the
experimental cytotoxicity data of the SW480 cell line. c Area Under the Curve (AUC) of treated SW480 cells normalized by the untreated control (dots), compared with the
area under the curve of the best-fit model (grey line). d Experimentally measured cytotoxicity curves for SW620 cells untreated (Ctrl), or treated at indicated time points with
irinotecan (6 h, 12 h, 18 h or 24 h after synchronization). e Best-fit of the extended PK-PD model to the experimental cytotoxicity data of the SW620 cell line. f Area under the
curve of treated SW620 cells normalized by the untreated control (dots), compared with the area under the curve of the best-fit model (grey line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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death and cell cycle differences between the tumor and the
metastasis-derived cells.

To allow for the comparison of the model with this experimen-
tal data, we supplemented the model by Dulong et al. 2015 [28]
with two cell population equations that explicitly track the num-
ber of alive and dead cells. An exponential growth and a first-
order natural cell death were assumed in both control and treated
conditions. Irinotecan was assumed to act negatively on cell prolif-
eration and survival through DNA damage formation, and a circa-
dian oscillation in the cell death rate was added, see
Supplementary Equations (3.30) and (3.31). Parameters of the
original model were kept unchanged apart from the formation rate
of the irreversible complex which had to be adapted for a success-
ful fit, and which ended up being reduced as compared to its for-
mer estimation.

Using the mRNA dynamics computed by the clock-irinotecan
model, the irinotecan PK-PD model allows to fit the circadian
dynamics of cell death (Fig. 6). The best-fit full model generated
a circadian cell death profile that agreed with the toxicity phase
of the experimental data for the SW480 cell line. The model also
recapitulated a different toxicity profile for the SW620 cell line,
supporting the hypothesis that the same drug at the same concen-
tration could lead to different responses based on the time of treat-
ment administration and on the cancer clocks. Interestingly, while
the highest and lowest cytotoxicity trends were the same in both
cell lines, the overall response to the cytotoxic effect of the drug
was higher in SW480 (derived from the primary tumour) in com-
parison to SW620 (derived from a metastasis, but from the same
patient). This also alludes to a role of the cellular clock profile in
treatment outcome, as the two cell lines have different oscillatory
patterns. We further tested a simplified version of the equation for
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the protein dynamics assuming constant, i.e. non-circadian, pro-
tein degradation (Supplementary information, Equation (3.3)
with constant degradation rate). As anticipated by the mathemati-
cal analysis, toxicity oscillation amplitudes were drastically
reduced to approximately 1% of the mesor and were then much
smaller than those observed experimentally. Yet, our simplified
clockPK-PD model with minor adaptations to the experimental set-
tings gave reasonable toxicity phases using non-circadian protein
dynamics with an appropriately chosen degradation rate (Supple-
mentary Fig. 6), without fitting the model to the circadian toxicity
values obtained experimentally, see Supplementary Fig. 7.

To test for the sensitivity of our final model to parameter varia-
tions, we evaluated parameter sensibility of a set of 123 para-
meters with respect to the phase and amplitude of irinotecan
circadian toxicity profiles (i.e. the curves depicted in Fig. 6c and
f) by calculating Sobol sensitivity total order indices, see Supple-
mentary Fig. 9. A close agreement was found between the para-
meter sensitivity on the phase and on the amplitude of the drug
chronotoxicity rhythms. Our analysis highlighted the impact of
the protein dynamics on the toxicity profile, most importantly
the relevance of the phases of the circadian degradation of CES2
(parameter phiCes from Supplementary Fig. 9) and UGT1A1 (para-
meter phiUgt) and the amplitude of CES2 (parameter ampCes).
Besides those parameters, several core-clock elements - in particu-
lar parameters associated with the loop formed by ROR, BMAL1 and
CLOCK (maximal transcription rates, degradation rates, production
rates) - showed high sensitivity, probably because existence of
most oscillations depends on the core clock. The feedback from
irinotecan-relevant genes to the core clock, through the inhibition
of REV-ERB by NFIL3 (parameter i_RevNfil) and the inhibition of
BMAL1 by TOP1 (parameter i_BmalTop), only showed a weak
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impact on the toxicity curve. All parameters associated with ABC
transporters showed a low impact on the toxicity profile.
4. Discussion

The circadian clock regulates the timing of various crucial mole-
cular pathways including drug metabolism, apoptosis, DNA
damage repair and cell cycle [59-60]. The malfunctioning of these
pathways is involved in cancer onset and progression. On the other
hand, several drugs used in cancer treatment target genes, which
are expressed in a circadian manner and also the metabolism of
these drugs is carried out by circadian-regulated genes and pro-
teins. Hence, timing treatment in accordance with the patient’s cir-
cadian timing system is likely to contribute to improved treatment
outcome, and several studies have shown promising results using
chronotherapy in cancer treatment [8].

We developed a novel mathematical model of irinotecan cellu-
lar PK-PD, which links the core clock with predicted treatment
toxicity for CRC cells. The model simulations highlighted the exis-
tence of time-dependent toxicity for the different cells, which was
different for the tumour-derived cell line as compared to the
metastasis-derived cell line. Our results suggest that, in addition
to gene expression, the dynamics of proteins, with circadian varia-
tion in their degradation, plays an important role in the timing of
drug toxicity. In particular the phase (the time of maximum
expression) and amplitude (difference between minimum and
maximum) of the circadian oscillation in protein degradation of
CES2, which controls the activation of irinotecan, seems to be rele-
vant in shaping the toxicity profile. Moreover, elements associated
with core-clock genes, such as BMAL1 or CLOCK showed high sen-
sitivity which proved the importance of the core-clock parameters
on irinotecan toxicity.
4.1. A comprehensive mathematical model for circadian regulation of
irinotecan PK-PD

Our clock-irinotecan model can be fitted to different scenarios
providing different circadian toxicity profiles for CRC cells. The
core-clock model was initially developed from multiple datasets
of mammalian SCN cells [23], and was successfully refined here
using quantitative measurements of the clock of the mouse liver,
and of SW480 and SW620 cell lines. Regarding the model of irino-
tecan PK-PD, it was designed based on extensive datasets in Caco-2
cells [28], and was further validated in both SW480 and SW620 cell
lines. Using SW480 and SW620 cell lines here provided a proof of
principle that a personalization of the model to other cell lines was
possible. Hence, models of both transcription-translation clock
network and irinotecan PK-PD were validated in several in vitro
and in vivo experimental settings, which argues in favour of their
reliability.

The reduction in fit quality from liver to SW480 to SW620 cells
likely results from the decreasing amplitudes of circadian oscilla-
tions, see Supplementary Fig. 5b [17,31]. Indeed, assuming that
the experimental data of the same gene, yet from different biologi-
cal sources (liver or CRC cell lines), shows the same level of noise,
arising from biological stochasticity or from experimental con-
straints, larger oscillation amplitudes lead to higher signal to noise
ratios, which facilitates fitting. In addition, the fact that the core-
clock model did not fully fit the SW620 data was an indication that
clock gene and protein interactions may be impaired in this cell
line or at least different from the ones implemented in the model.
It is also important to notice that each patient (or healthy indivi-
duals) and each cancer are unique. Accordingly, different cell lines,
patients or healthy individuals [62] have specific clock phenotypes,
and this requires personalization of treatment. Thus, any clinical
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application requires that our model is fitted to the individual
patient, or to groups of patients with similar clock molecular
profiles.

Another ODE-based model of the mouse liver clock was
designed by Woller et al. to investigate the effect of feeding cycles
on liver circadian rhythms [25,26]. That model was developed to
address a different question as compared to this study and could
not be readily used here, as for instance the energy metabolism
part was out of the scope here. In addition, that model did not
include different compartments for the nucleus and the cytoplasm,
which we were able to do thanks to the recent publication of data
on clock-gene subcellular trafficking [43]. Further, we included the
gene Clock to the model, to incorporate available data on this gene
and investigate its importance in the clock machinery. Finally, our
model integrates both mRNA and protein circadian datasets in a
quantitative manner, meaning that it does not only predict the
phase and relative amplitude of the gene expression data as exist-
ing models do [23,26], but also computes the protein expression
levels, such information being critical for the connection to PK-
PD models. A very interesting perspective for future studies would
be to consider coupling the model by Woller et al. [26] with ours to
investigate the impact of feeding/fasting cycles on irinotecan
chronopharmacology, as liver enzymes involved in the drug PK
showed variations according to food intake [63].

Our core-clock model represents intracellular regulatory feed-
back loops that implicitly include extrinsic circadian regulators
such as temperature or light/dark cycles. Such external synchroni-
zers were not present in our cell culture setting, so that the SW480
and SW620 models are likely to represent the actual events at
stake. On the opposite, external or systemic regulators have a great
influence on the mouse liver clock. This precise question was the
topic of another of our recent studies, in which we have explicitly
modelled the influence of temperature cycles and food intake on
the core clock in four classes of mice (2 strains, 2 sexes) [64].

Regarding CES2 modelling, we chose not to connect its protein
degradation rate directly to the core clock, since there is no pub-
lished data regarding the existence or absence of such molecular
links. Thus, instead of including unreliable reactions to the model,
we preferred to estimate the circadian rhythm of CES2 protein
degradation directly from the data. The parameter sensitivity ana-
lysis evidenced the importance of this part of the model and
strongly advocates the generation of additional biological results
about the circadian control of CES2 protein degradation.

Our experimental results using a CRC in vitro cellular system
highlight the existence of cytotoxicity differences resulting from
time-dependent treatment, which were further emphasised by
our simulations. Compared to the predicted toxicity acrophase of
the SW480 cell line, the toxicity acrophase of the SW620 cell line
is delayed by about four hours. In particular, the metastasis-
derived cell line showed the lowest variations in cytotoxicity
among different treatment times. Our data also shows a difference
in terms of drug resistance between the two CRC cell lines, which,
we hypothesize, could be overcome if using treatment times of
high cytotoxicity with the same amount of drug, or potentially
by increasing dosages in times of least toxicity. Yet, these are still
speculative ideas, which need further studies and validation in a
clinical setting. The small number of cell lines included in our
experimental setup present some limitations to the generalization
of our findings and thus further investigation of time-dependent
treatment with a higher variety of cell lines and anticancer treat-
ment agents needs to be carried out in future research.

4.2. Personalized models to optimize timing in cancer treatment

Chronotherapeutic studies aim at increasing treatment efficacy
and minimizing toxicity for healthy cells leading to a reduction of
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the side effects for patients [65]. Previous clinical results have
shown that personalization is a key element of successful chron-
otherapy outcome, for example males and females have shown dif-
ferent toxicities depending on treatment timing [6,16,66]. Sex
should be considered as a relevant determinant of circadian
rhythms and optimal drug timing in the light of recent preclinical
and clinical findings [6,16,66]. Here, the mouse liver data was
obtained from male mice, and the cell lines were derived from a
human male, so that the sex specificity seems out of the scope of
this study. However, we have started to investigate the impact of
sex on the circadian timing system as mentioned above and did
find significant sex-related differences in the shape and intensity
of systemic controls on the core clock in a mouse study. Several
sex-specific datasets related to irinotecan chronotoxicity are avail-
able in mice and in patients, and further modelling work would
allow to investigate molecular determinants of male/female differ-
ences in irinotecan response with respect to timing [8].

One aspect of personalized chronotherapy is an adaptation of
medication timing to the patient’s internal time, which can be best
assessed by a combination of mathematical modelling and
machine learning. Existing models of irinotecan PK-PD offer to pre-
dict best drug timing based on circadian rhythms of proteins
involved in irinotecan pharmacology, in the organ of interest (e.g.
liver, or intestine) or in the tumour. However, such datasets are
unlikely to be obtained in the clinics on an individual patient basis
as it would involve multiple around-the-clock biopsies, which
obviously raises questions of feasibility and ethics regarding bene-
fit/risk ratios. Furthermore, circadian datasets on irinotecan-
related proteins would not be informative for personalizing the
timing of other drugs, in particular the ones usually combined with
irinotecan (e.g. 5-fluorouracil, oxaliplatin). Instead, our new com-
bined model provides the option of computing irinotecan best tim-
ing from circadian rhythms of core-clock mRNA levels. The major
advantage of measuring core-clock genes - and not directly drug-
related genes - is that it can be done in any organ, since the periph-
eral core clock is synchronized across healthy tissues as suggested
by mouse and baboon studies [11,35,67]. Several patient-friendly
methods for measuring clock-gene expression in saliva or blood
samples have been recently validated in the clinics (see [12] for a
review). Furthermore, strong oscillations, clearly above noise level,
are expected in core-clock gene expression, which facilitates the
characterisation of their circadian profiles and reduces the number
of needed time points to do so [62]. In addition, a newly available
statistical algorithm offers to derive clock gene mRNA circadian
rhythms from a single-time-point measurement of 10 clock genes
[68]. Such methodology could potentially be used to predict clock
gene variations when only one time point is available, which is
often the case for the tumour. Our combined model could then
be used to infer irinotecan personalized best timing from clock-
gene expression. As such chronoPK-PD models could be developed
for any other drug, optimal timing could be derived for multiple
compounds from a single dataset of clock gene mRNA circadian
variations. In addition, instead of simplifying a patient’s complex
circadian profile by an estimate of a value associated with their cir-
cadian time, our model has the potential to fit the circadian
rhythms of the patient based on their personal gene expression
data from peripheral tissues (e.g. saliva [62]). Thus, in a clinical
application, the model can be fitted both to the tumour clock and
to the healthy peripheral clock of the patient. Several therapeutic
strategies may then be considered from maximizing efficacy, or
minimizing side effects, of a given drug dose, to more advanced
approaches aiming to optimize antitumor efficacy under strict tol-
erability constraints [27]. To exemplify the power of our model for
personalization, we fit the model to two different cell lines derived
from human CRC with cell line-specific toxicity profiles, which are
different in the metastasis-derived cells as compared to the pri-
5181
mary tumour cells likely due to a disruption of the circadian profile
and an alteration of metabolism in the former cells [31]. Overall,
our approach provides a promising direction for mechanism-
based chronotherapy personalization in the clinical setting.

The sensitivity analysis of the circadian toxicity profile is in
accordance with the previously published sensitivity analysis by
Dulong et al. 2015 [28], highlighting especially the importance of
CES2, which is responsible for activation of irinotecan. Using our
fitted mathematical model, changes in toxicity in response to rele-
vant alterations in core-clock or protein dynamics can in principle
be predicted based on circadian data for core-clock and drug-
pharmacology genes. Further, the model can also be adapted for
patients with alterations in irinotecan PK-PD proteins, such as
patients with increased sensitivity against irinotecan due to a
reduced UGT1A1 activity (reduced deactivation of SN-38) [69], or
patients with a decreased sensitivity to irinotecan due to an over-
expression of ABC transporters, which leads to a faster drug
removal from the cell [70].

The influence of the core clock on the toxicity profile supports a
dependence of optimal treatment times on the personal circadian
rhythm of patients, in accordance with previous reports [8]. In par-
ticular, several core-clock parameters associated with BMAL1 and
CLOCK (BMAL1 degradation rate, CLOCK activation rate, cytosolic
BMAL1 degradation rate), show high sensitivity in our model, high-
lighting the relevance of the core clock for irinotecan PK-PD. This is
particularly relevant for cancer patients, who often show alteration
in their circadian rhythms that might be further changed during
hospitalization, as bedridden patients seem to have disrupted cir-
cadian rhythms [71-73]. This suggests that even during a treat-
ment frame of a few weeks, optimal treatment times might be
shifted by a flattening of the circadian rhythms. Light therapy
might help to stabilize toxicity profiles, as it has been shown to
improve circadian oscillations in breast cancer patients [72]. Also
melatonin administration or pharmacological modulation of core-
clock genes may have a positive impact on cancer therapy
[76,77]. We here report differently timed toxicity peaks for CRC cell
lines. Naively, one would assume that cancer cells show less robust
oscillations compared to healthy cells, but this remains to be
shown in future research. While the toxicity of Caco-2 cells in
the model of Dulong et al. was predicted following a repeated 2-
hour treatment [28], we here predict toxicity phase following a
84.5-h long treatment. The situation in the patient is most likely
somewhere between these values as irinotecan terminal half-life
after a 30-min infusion to colorectal cancer patients in the morning
was approximately equal to 12 h [65]. As the treatment adminis-
tration scheme may present complex and chronomodulated
shapes, irinotecan whole-body pharmacokinetics must be precisely
modelled in order to faithfully predict plasma and tissue exposure
concentrations. A mathematical model relating infusion pump and
administration schedules to predict actual drug concentrations in
the body has been developed [78], and a corresponding extension
could be used to further improve predictions of the here presented
cellular model in a whole-body context. Thus, for personalized
medical treatments the personalization of mathematical models
is key, using easily accessible patient data to predict unassessable
information relevant for medication.

5. Conclusion

Our clock-irinotecan model can be further optimized in a perso-
nalized manner and may be used to predict the toxicity profile of a
particular patient upon fitting his or her molecular circadian pro-
file. The model can be additionally used to investigate whether
the differential regulation of PK-PD elements, for example via addi-
tional medication with melatonin, can result in circadian toxicity
profiles that would support chronotherapy in irinotecan-treated
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cancers [76]. Altogether, our findings highlight the relevance of
investigating the effect of chronomodulated therapy in a clinical
setting as it may contribute to providing better personalized med-
ical treatment with higher efficacy and lower cytotoxicity, leading
to a decrease of side effects and an increase of life quality for the
patient.

6. Code availability

The code is available at biomodels (identifier:
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