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Abstract. Mathematical and numerical models are increasingly used in microbial ecology to model
the fate of microbial communities in their ecosystem. These models allow to connect in a mechanistic
framework species-level informations, such as the microbial genomes, with macro-scale features, such
as species spatial distributions or metabolite gradients. Numerous models are built upon species-level
metabolic models that predict the metabolic behaviour of a microbe by solving an optimization problem
knowing its genome and its nutritional environment. However, screening the community dynamics with
these metabolic models implies to solve such an optimization problem by species at each time step,
leading to a significant computational load further increased by several orders of magnitude when
spatial dimensions are added.

In this paper, we propose a statistical framework based on Reproducing Kernel Hilbert Space
(RKHS) metamodels that are used to provide fast approximations of the original metabolic model.
The metamodel can replace the optimization step in the system dynamics, providing comparable out-
puts at a much lower computational cost. We will first build a system dynamics model of a simplified
gut microbiota composed of a unique commensal bacterial strain in interaction with the host and
challenged by a Salmonella infection. Then, the machine learning method will be introduced, and par-
ticularly the ANOVA-RKHS that will be exploited to achieve variable selection and model parsimony.
A training dataset will be constructed with the original system dynamics model and hyper-parameters
will be carefully chosen to provide fast and accurate approximations of the original model. Finally, the
accuracy of the trained metamodels will be assessed, in particular by comparing the system dynamics
outputs when the original model is replaced by its metamodel. The metamodel allows an overall rel-
ative error of 4.71% but reducing the computational load by a speed-up factor higher than 45, while
correctly reproducing the complex behaviour occurring during Salmonella infection. These results pro-
vide a proof-of-concept of the potentiality of machine learning methods to give fast approximations of
metabolic model outputs and pave the way towards PDE-based spatio-temporal models of microbial
communities including microbial metabolism and host-microbiota-pathogen interactions.
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Résumé. Les modèles numériques et mathématiques sont de plus en plus utilisés en écologie micro-
bienne pour modéliser le devenir de communautés microbiennes dans leur écosystème. Ces modèles
permettent de coupler, dans des modèles mécanistiques, des informations à l’échelle de l’espèce micro-
bienne, telles que le génome, avec des mécanismes à plus larges échelles, telles que des distributions
spatiales ou des gradients de métabolites. De nombreux modèles sont construits à partir de mod-
èles métaboliques qui prédisent le comportement métabolique d’un microbe en résolvant un problème
d’optimisation basé sur son génome et son environnement nutritionnel. Cependant, l’analyse de la dy-
namique des communautés à l’aide de ces modèles métaboliques implique la résolution de ce problème
d’optimisation par espèce à chaque pas de temps, ce qui entraîne une charge de calcul importante qui
augmente encore de plusieurs ordres de grandeur lorsque des dimensions spatiales sont ajoutées.

Dans cet article, nous proposons un cadre statistique basé sur des métamodèles RKHS (Repro-
ducing Kernel Hilbert Space) qui sont utilisés pour fournir des approximations rapides du modèle
métabolique original. Le métamodèle peut remplacer l’étape d’optimisation dans la dynamique du
système, fournissant des résultats comparables à un coût de calcul beaucoup plus faible. Nous com-
mencerons par construire un modèle de dynamique des systèmes d’un microbiote intestinal simplifié
composé d’une souche bactérienne commensale unique en interaction avec l’hôte et confronté à une
infection par Salmonella. Ensuite, la méthode d’apprentissage automatique sera présentée, basée sur
la méthode ANOVA-RKHS qui permer de sélectionner des variables et d’assurer ainsi la parcimonie du
modèle. Un ensemble de données d’entraînement sera construit avec le système dynamique original et
les hyperparamètres seront soigneusement choisis pour fournir des approximations rapides et précises.
Enfin, la précision de ces métamodèles sera évaluée, notamment en comparant les résultats du système
dynamique lorsque le modèle original est remplacé par son métamodèle. Le métamodèle permet une
erreur relative globale de 4.71% tout en réduisant la charge de calcul par un facteur d’accélération
supérieur à 45, tout en reproduisant correctement le comportement complexe qui se produit pendant
l’infection par Salmonella. Ces résultats fournissent une preuve de concept de la potentialité des
méthodes d’apprentissage automatique pour donner des approximations rapides des sorties de modèles
métaboliques et ouvrent la voie à des modèles spatio-temporels de communautés microbiennes basés
sur les EDP, intégrant le métabolisme microbien et les interactions hôte-microbiote-pathogène.

1. Introduction

Modelling in microbial ecology. Microbial ecology focuses on the study of microbial communities, called micro-
biota, interacting with their environment and regulated by the microbiota host [5,32]. The gut microbiota is such
a symbiotic ecosystem composed of a community of hundreds of microbial species living in the large intestine
lumen, referred to as the commensals, and regulated by the epithelial cells of the host colon. The main drivers of
the microbiota dynamics are the metabolism of each microbial species, the interactions between micro-organisms
and their spatio-temporal interactions with the host. In the specific case of a pathogenic infection, a new player
disturbs the system and tries to shift the microbial environment from an healthy homeostasis favourable to
the commensals towards a dysbiotic situation favourable to the pathogen, enabling its colonization [4,28]. The
concept of pathobiome has been introduced [35] as an analysis framework to describe the specific interactions
between the commensal microbiota, the host and the pathogen leading to pathogenic infection.

Mathematical and numerical models of the gut microbiota have been recognized as suitable tools for providing
mechanistic interpretations of biological observations, predicting the evolution of these ecosystems, for example
in pathological situations, or defining controlling actions to lead them towards a targeted state [17, 22, 36, 37].
Mathematical models in microbial ecology are population dynamics models describing the microbial popula-
tion growth, i.e. their metabolism, microbe-microbe interactions and interactions with their environment, in
particular the available nutrients.
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FBA framework to model microbial metabolism. A classical modelling framework to represent the microbial
metabolism is Flux Balance Analysis (FBA) [25, 30]. FBA relies on metabolic models inferred from microor-
ganism genome: the genes are annotated to identify the biochemical reactions they code for and the whole
set of reactions is combined into a genome-scale metabolic network connecting the substrate metabolites the
microorganism is able to metabolize to the synthesized biomass and end-products produced by the microbe.

Namely, if we note (mi)1⩽i⩽Nm the set of the Nm metabolites that can be found in a micro-organism, and
(rj)1⩽j⩽Nr

the set of the Nr reactions coded in the genome, then mass conservation equations can be written
on the internal concentration of the metabolites :

∂t[mi] =
∑

j∈R(mi)

θmi,jνj (1)

In this equation, R(mi) is the subset of reactions involving the metabolite mi, θmi,j is the stoichiometric
coefficient of the metabolite mi in the reaction j (negative for consumption reaction, and positive for production
reaction) and νj is the reaction flux, i.e. the quantity of metabolite involved in the reaction by time and microbial
biomass units (the flux unit is mmol.h−1.g−1). In FBA models, an additional fictitious biochemical reaction
is considered: the biomass reaction rb, with its corresponding fictional molecule b representing biomass. This
comes from an abstraction of the mean content of the cell, and the energetic cost to synthesize it, see for example
the works of Battley et al. [2]. This reaction connects the biomass precursors to the biomass b with the chemical
equation ∑

i∈M(b)

θmi,rbmi → b

where θmi,rb is the stoichiometric coefficient of metabolite mi in the biomass reaction rb and M(b) is the subset
of metabolites mi that constitute the biomass, i.e. the metabolites needed by the microorganism for growth (to
duplicate the genomic material, the metabolism machinery, the cellular membrane, etc...). The metabolic flux
flowing through this biomass equation is noted νb and is then the amount of microbial biomass produced by
time and biomass unit, with unit (g.h−1.g−1 by convention, or h−1).

The FBA models aim to predict this growth rate νb while observing biological constraints such as the
mass conservation equations (1). To achieve this prediction, the FBA framework makes important simplifying
assumptions: 1) Steady-state assumption. All internal metabolites are assumed to be at steady-state in the
cell, so that the mass conservation equation (1) reduces to a linear system on the flux vector ν := (νj)1⩽j⩽Nr

gathering the fluxes of the Nr reactions of the metabolic network,

A · ν = 0

where A is the reaction matrix, i.e. the matrix of dimension Nm × Nr with Aij := θmi,j the stoichiometric
coefficient of metabolite i in the reaction j, gathering the whole set of conservation equations for the metabolites
and reactions involved in the metabolic network; 2) Biomass maximization. The microbes are assumed to be
instantaneously maximizing the biomass production in a given nutritional context; 3) Flux constraints. Every
flux are constrained by intrinsic limits, related for example to metabolite transporter capacities, or known
enzymatic efficiency. These limits are noted cmin and cmax so that cmin ≤ ν ≤ cmax.

Hence, the biomass production and all the metabolic fluxes in the microbial machinery can be predicted with
the constrained optimization FBA problem

find ν∗ ∈ RNr , such that ν∗ := arg max
ν ∈ RNr

A · ν = 0
cmin ≤ ν ≤ cmax

νb (2)
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This problem searches for the optimal growth rate represented by the component νb, which is the biomass
formation flux. It is obtained by the system under mass-balance and flux constraints. Mathematically speaking,
this optimization problem is linear and can be solved using linear programming: very efficient solvers exist
for such a problem, even for high dimensional problems like this one, where Nr is classically around several
thousands. A classical FBA toolbox is the Cobra toolbox (in Matlab environment) [12] or its python equivalent
Cobrapy [9].
Nutritional environment described as constraints on uptake fluxes. Important FBA model parameters are con-
straints on substrate flux from the extracellular compartment into the intracellular compartment, i.e. the first
reactions of the metabolic network, enabling nutrients to enter the microbial cell. These constraints represent
the possible uptake for the microorganism, hence representing a proxy of the microbe nutritional environment,
i.e. the available nutrients for the microbial species to activate its metabolism.

The uptake reactions are exchange reactions, i.e. reactions at the interface between the intra and extracellular
media. Indeed, by construction, exchange reactions are reactions

mi −→ mi

between the extracellular pool mi, i.e. the nutritional environment, and the intracellular pool mi of the
corresponding metabolite.

If we note c
(up)
s the upper bound on the uptake fluxes νup of the Nup metabolites in the extra-cellular

environment, c(up)s ≤ νup ≤ 0, we get a mapping Fs between c
(up)
s and the FBA solution for the bacterial strain

s

Fs : RNup

−→ RNr (3)

c(up)s 7→ ν∗ (4)

where ν∗ is the FBA solution with the constraints c
(up)
s for the strain s. This mapping allows to tune the

uptake constraints to adapt the FBA prediction to a specific nutritional environment context. We note that by
convention, uptake fluxes are negative due to the exchange reaction orientation.
Dynamic FBA. Eq. 4 can be used as the second member of an ordinary differential equation (ODE) to compute
the growth or consumption rates of a population dynamics equation in a framework termed dynamic FBA or
dFBA [20]. Let us introduce a generic dFBA model describing the dynamics of a microbial population density
b growing on a substrate of density s with metabolic fluxes described by a FBA model 2 and the resulting
mapping 4. We have

∂tb = Fb,1(c
(up)(s, b))b (5)

∂ts = Fb,s(c
(up)(s, b))b (6)

In this equation, c(up)(s, b) is a function mapping the state variables b and s to the constraints c(up) on the
substrates applied in the FBA model 2. As an example, we can set c(up)(b, s) = s

Ldtb
to model the fact that

the remaining substrate pool s is shared between the current microbial population b at a time rate Ldt. We
indicate by Fb,1 the biomass production flux (index 1) and Fb,s the consumption flux of metabolite s (index s)
of the FBA model of b. In the sequel, we will simplify the notations by noting Fb(s, b) = Fb(c

(up)(s, b)).
The dFBA framework is used in an increasing number of system biology models of the gut microbiota [7,19].

However, dFBA involves the resolution of many FBA optimization problems during the time integration inducing
high computational costs that can lead to intractable computations when the dFBA is repeated multiple times,
like in several intensive numerical applications such as sensitivity analysis, inference or PDEs, advocating for
reduction method.
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Outline of the paper. This paper aims to 1) adapt a metamodeling method to the context of metabolic models
to accelerate the computation of a population dynamics model coupled to a FBA model such as Eq. (5),
2) benchmark this method in the specific context of an ODE-based model of the gut environment during
the infection of an enteric pathogen: Salmonella enterica Typhimurium. We want to substitute the FBA
optimization problem solved at each time step by an approximate model, built with a Reproducing Kernel
Hilbert Space (RKHS) metamodeling method. The RKHS metamodel is a machine learning approach: an
approximation of the model image is built from the model evaluation in a sample of the state space (i.e. a
learning database). This metamodel will be used to predict the model response for new points outside the
learning database, with a faster computation than the original optimization problem.

First, we will set up the general framework of the accelerated model using eq. (5) as a toy example to introduce
the essential mathematical results for RKHS metamodeling in Sec. 2. Then, we will use the acceleration method
on a more evolved population dynamics model of Salmonella infection with the host response in Sec. 3. This
population dynamic model will be used to produce a learning database to train the metamodel in Sec. 4. Next,
the hyperparameters of the learning method will be selected in Sec. 5 in order to provide a good trade-off
between prediction accuracy and computation speed. Finally, the RKHS metamodel will be derived with the
selected hyperparameters and its accuracy will be assessed in Sec. 6. See Fig. 1 for a sketch image of the overall
methodology.

2. Mathematical framework for the RKHS metamodel

2.1. Accelerating a dFBA with a metamodel: general methodology

To accelerate the computation of problem 5, we speed up the evaluation of Fb by using a metamodel F̂b,
resulting in an overall acceleration for the time integration of (5) (see Fig. 1, left panel). Namely, we solve the
following problem.

∂tb = F̂b,1(c
(up)(s, b))b (7)

∂ts = F̂b,s(c
(up)(s, b))b (8)

where F̂b is the best approximation of Fb in a particular functional space, here a specific RKHS called ANOVA-
RKHS. We now precise the mathematical framework we use by introducing important results for the global
understanding of RKHS metamodeling. We next introduce ANOVA-RKHS that will be used for variable se-
lection. These results are however classical, and we do not provide their proof that can be found in the
corresponding references. The main contribution of the paper is the specific adaptations needed for the applica-
tion of ANOVA-RKHS metamodels to the context of microbial population dynamics models, and in particular
the context-specific learning database construction, hyperparameter tuning and selection criteria that will be
crucial for tailoring a trade-off between metamodel accuracy and speed-up (see Fig. 1, right panel).

2.2. Metamodeling and Hoeffding decomposition

Let us set up the context of metamodeling for metabolic models. We consider X a Nup-dimensional random
vector of possible metabolic constraints for the FBA model inputs with known distribution PX = P1×· · ·×PNup

on X and we construct

Ys = Fs(X)

where Ys is a Nr-dimensional vector and s an index designating the bacterial strain related to the FBA model.
In this paper, we will consider real-valued meta-models. For a given 1 ≤ j ≤ Nr and a given strain s, building
the meta-model mj of the real-valued function Fs,j amounts to solve in a given functional space H ⊂ L2(PX),
the non-parametric Gaussian regression model [14]

Ys
j = mj(X) + σε (9)
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Speeding-up dFBA

dFBA Model
∂tx = f (x,F(x))

c(up)(x) FBA ν = F(x)

xn+1 = xn +∆tf(x,F(x))

Accelerated Model
∂tx = f(x, F̂(x))

c(up)(x)
ANOVA-RKHS

metamodel ν̂ = F̂(x)

xn+1 = xn +∆tf(x, F̂(x))

Metamodeling framework

=Y F (X)

Flux Constraint

Database: {Yi,Xi}Nobs
i=1

For F̂ ∈ HK , find
θ∗ = arg minθ∈RK ∥Y − F̂K(X|θ)∥+ µG(θ)

µ? HK?Hyperparameters

Number
of observations K

Feature
selection

Trade-off:
computation speed of F̂K(xunseen|θ)

v/s approximation accuracy.

Figure 1. Sketch of the general methodology. Left panel: speeding up dFBA. The dFBA
framework (upper panel) is defined by the coupling of a FBA metabolic model with a dynamic
system. Numerically, this remains to loop over a time integration scheme in which a FBA is
solved at each time step. We propose a new framework (lower panel) where the FBA model
is replaced by a low-computational-cost metamodel speeding up the time integration process.
Right panel: metamodeling framework. We set up the general statistical framework where the
flux Y is the output of the FBA model F given the input X. We then assemble a learning
dataset by sampling the input space (Xi) and computing the corresponding FBA output Yi

with Nobs observations. The metamodel is then defined as the solution of a non-linear non-
parametric regression problem in a finite dimensional functional space HK of dimension K with
regularization function G. In practice, we will choose a group-lasso regularization to perform
feature selection together with the metamodel computation. This regression problem has two
hyperparameters to be chosen: the regularization parameter µ, that will tune the number of
selected input variables, and the dimension K of the functional space, which is related to the
number of observations in the RKHS framework (see Sec. 2 and 5). Selecting lower number of
features or lower K decreases the computation load of the metamodel evaluation in a new unseen
point xunseen and thus accelerates the ODE model integration but decreases the metamodel
accuracy: a trade-off must be sought (see Sec. 5).

where ε ∼ N (0, 1) is independent of (X) and the variance σ2 is unknown.
When the input variables X are independent, and since mj ∈ L2(PX), the classical Hoeffding-Sobol decom-

position holds (see [33, 34] section 11.4). The functions mj can be decomposed with its ANOVA functional
expansion

mj(x) = mj,0 +
∑
p∈P

mj,p(xp)
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where p is a multi-index, P the power set of {1, · · · , Nup}, xp denotes the vector with components xj for j ∈ p.
The functions mp are L2(PX) functions centered and orthogonal in L2(PX), so that the variance of mj can be
decomposed with

V ar(mj(x)) =
∑
p∈P

V ar(mj,p(xp)).

The Hoeffding decomposition is used to separate principal effects (the function mj,p that involve one unique
input variable xi) from variable interactions (the functions mj,p with |p| > 1, i.e. involving more than one
input component). The Hoeffding decomposition is widely used for sensitivity analysis, since Sobol index
directly derives from it, or for variable selection: the relative contribution of the functions mj,p in the Hoeffding
decomposition allows to neglect the less contributive terms which can lead to discard some input variables if all
the functions they are involved in are neglected.

2.3. Generalities on RKHS metamodel

Let X be a compact subset of RNup

. A definite symmetric kernel is a function

k : X × X −→ R
(x, x′) 7→ k(x, x′)

such that, for all N ∈ N and x1, · · · , xN ∈ XN , the Gramm matrix (k)i,j = k(xi, xj) is symmetric positive
definite.

The Moore–Aronszajn’s theorem ensures a bijective mapping between the space of positive definite kernels
and specific Hilbert spaces termed Reproducing Kernel Hilbert spaces (or RKHS).

Theorem 1 (Moore–Aronszajn [1]). Setting k : X × X → R a symmetric positive definite kernel, there exists
a unique Hilbert space Hk of real-valued functions on X defined as the completion of

H̃k :=

{
f : X → R|f(·) =

∞∑
i=1

βik(·, zi), βi ∈ R, zi ∈ X , ∥f∥Hk
< ∞

}

with respect to the norm ∥ · ∥Hk
induced by the scalar product〈 ∞∑

i=1

βik(·, zi),
∞∑
j=1

αjk(·, yj)

〉
Hk

=

∞∑
i=1

∞∑
j=1

βiαjk(yj , zi)

that endows Hk. The kernel k is termed the Reproducing kernel of the RKHS Hk.

Reciprocally, if H is a Hilbert space of functions f : X → R endowed with its inner product noted ⟨·, ·⟩H,
and if ∀x ∈ X the functional f 7→ f(x) is continuous on H, then H is a RKHS [6]. The reproducing kernel of
H can be exhibited according to the Riesz theorem: for all x ∈ X , there exists a unique kx ∈ H such that for
all f ∈ H, f(x) = ⟨f, kx⟩H. The reproducing kernel k is then defined as

k : X × X −→ R
(x, x′) 7→ kx′(x) = ⟨kx, kx′⟩H

and we have by construction the reproducing property

f(x) = ⟨f, k(·, x)⟩H.
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The RKHS framework is very powerful to approximate solutions of the non-linear regression problem 9 on
the basis of Nobs-samples (Ys

j,i,Xi), i = 1, · · · , Nobs in the RKHS Hk. Namely, we will address the problem of
finding

m∗
j := arg min

mj∈Hk

1

Nobs

Nobs∑
i=1

(Ys
j,i −mj(Xi))

2 + g(∥mj∥Hk
) (10)

where g is a strictly increasing function allowing to regularize the regression problem. As Hk is a functional
space of a priori infinite dimension, this problem must be discretized to be solved. In the RKHS framework,
the Representer theorem reduces this problem to a Nobs-dimensional minimization

Theorem 2 (Representer Theorem [31]). Any function mj ∈ Hk minimizing equation (10) admits a represen-
tation of the form

mj(·) =
Nobs∑
i=1

αik(·,Xi)

so that problem (10) can be replaced by finding

α∗ := arg min
α∈RNobs

1

Nobs

Nobs∑
i=1

Ys
j,i −

Nobs∑
j=1

αjk(Xj ,Xi)

2

+ g


Nobs∑

i=1

Nobs∑
j=1

αiαjk(Xj ,Xi)

1/2
 (11)

or, in vectorial form

α∗ := arg min
α∈RNobs

1

Nobs
∥Ys

j −K · α∥2F + g
((

αtKα
)1/2) (12)

where K is the Gram matrix obtained with the kernel k and (Xi)i=1,··· ,Nobs
.

The inference of α∗ uniquely defines the metamodel m∗ which can be evaluated in a new point X ∈ RNup

with

m∗(X) :=

Nobs∑
i=1

α∗
i k(X,Xi). (13)

We note that the computational load of eq. (13) linearly depends on Nobs.

2.4. ANOVA-RKHS

In (12), multidimensional kernels can be chosen to assemble the matrix K, resulting in a simple regression
problem if g = Id. However, in the context of metabolic modelling, vectors X can be of high dimension (a.e.
in our application Nup = 9) implying a large number Nobs of samples in the learning set to cover this high
dimension space. Thinking in term of computational budget for the evaluation of eq. (13) which is linearly
tuned by Nobs, it is appealing to reduce Nup and thus the dimension of the space of state variable involved in
the metamodel. For a fixed number Nobs allowed by the computational budget, the metamodel approximation
accuracy is expected to be better in a reduced state variable space (see Sec. 7.3 for a deeper discussion on this
aspect): we then adopt a more evolved method based on variable selection framework introduced in [14] and
based on a very specific RKHS introduced in [8], the ANOVA-RKHS. The ANOVA-RKHS H is built as a direct
sum of sub-RKHS Hp so that a given function f ∈ H will have for Hoeffding decomposition its decomposition on
the subspaces Hp. Using the ANOVA-RKHS, we will build a metamodel only involving the most significant state
variables (i.e. a reduced number Nup), reducing the input space dimension and thus increasing the metamodel
accuracy and the computational speed-up for a given computational budget fixed by Nobs. The goal of the
ANOVA-RKHS is not to accelerate the metamodel computation in (12), but rather to speed up the metamodel
evaluation in an unseen point in (13).
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Let us note X = X1 × · · · × XNup . For each coordinate a ∈ {1, · · · , Nup}, a kernel ka and its corresponding
RKHS Ha are chosen on Xa, with the additional properties: 1) ka is Pa × Pa mesurable on Xa × Xa and 2)
EPa

√
ka(Xa, Xa) < ∞.

The RKHS Ha can be decomposed as Ha = H0a

⊥
⊕ H1a where

H0a := {fa ∈ Ha,EPa
(fa(Xa)) = 0}, H1a := {fa ∈ Ha, fa(Xa) = C}

the kernel associated to the RKHS H0a being defined as follows [14] p.8:

k0a(Xa, X
′
a) = ka(Xa, X

′
a)−

EU∼Pa
[ka(Xa, U)]EU∼Pa

[ka(X
′
a, U)]

E(U,V )∼Pa⊗Pa
[ka(U, V )]

. (14)

The ANOVA kernel is finally defined by

k(X,X ′) =

(
Nup∏
a=1

(1 + k0a(Xa, X
′
a))

)
= 1 +

∑
p∈P

kp(Xp, X
′
p) (15)

with kp(Xp, X
′
p) =

∏
a∈p k0a(Xa, X

′
a). The corresponding RKHS is finally

H =

(
Nup∏
a=1

1
⊥
⊕ H0a

)
= 1+

∑
p∈P

Hp (16)

where Hp is the RKHS associated to kp. Let us now take any function f in the ANOVA-RKHS H. We get by
the reproducing property and linearity

f(x) = ⟨f, k(x, .)⟩H = f0 +
∑
p∈P

fp(x), with fp(x) = ⟨f, kp(xp, .)⟩H (17)

As the functions fp are centered and uncorrelated by construction, this decomposition is also the Hoeffding
decomposition of f . This setting will be used for variable selection: in the following, the numerical problem will
be set up, with a group-lasso regularization that will select the important variables and variables interactions.

2.5. Discretization of the regression problem and metamodel construction

From the representer theorem 2 and the ANOVA-RKHS reproducing property in eq. (17), we can state the
following finite dimension parametric regression problem: for a given 1 ⩽ j ⩽ Nr and a given bacterial strain s,
find

θ̂s0,j , (θ̂
s
p,j)p∈P := arg min

θs0,j ∈ R
θsp,j ∈ RNobs ,∀p ∈ P

∥Ys
j − (θs0,j1+

∑
p∈P

Kpθ
s
p,j)∥22 + G(W, θsp,j) (18)

with Kp ∈ RNobs×Nobs the Gram matrix such that (Kp j1,j2)1≤j1,j2≤Nobs
= kp(c

j1 , cj2), the value of the kernel
kp evaluated at constraint points cj1 and cj2 . In this equation, the norm ∥ · ∥2 is the classical l2 norm: ∥x∥2 =(∑

i=1,··· ,Nobs
x2
i

)1/2
. The term G is a regularization term that writes:

G(W, θsp,j) = Nobsµ
∑
p∈P

∥Wθsp,j∥2

with µ an hyperparameter and W some weight matrix.
If the weight matrix is W = K

1/2
p , then ∥Wθsp,j∥2 = ∥fp∥Hp

where fp :=
∑Nobs

i=1 θsp,j,ikp(Xi, ·) with Xi the
i-th row of the learning database X. If the weight matrix is W = 1√

n
Kp, then ∥Wθsp,j∥2 = ∥fp∥ where

∥ · ∥ is the empiric l2 norm. A composite criteria can be chosen such as the ridge group sparse criteria



196 ESAIM: PROCEEDINGS AND SURVEYS

√
Nobsγ

∑
p∈P ∥Kpθ

s
p∥2 +Nobsµ

∑
p∈P ∥K1/2

p θsp∥2 as introduced in [14] (formula 17). In this exploratory study,
we set W = Id, leading to a group-lasso criteria.

To compute Kp, a numerical version of the ANOVA-RKHS is needed, and in particular the computation of
ka0 and the integrals in Eq. (14). These integrals are computed empirically for all 1 ≤ i ≤ Nobs once for all and
stored for further use with the formulas:

EU∼Pa [ka(Xi,a, U)] ≃
1

Nobs

Nobs∑
j=1

ka(Xi,a,Xj,a) and EU∼Pa⊗V∼Pa [ka(U, V )] ≃
1

N2
obs

∑
i=1

Nobs∑
j=1

ka(Xi,a,Xj,a) (19)

where Xi is the i-th row of the learning database X and a is the mono-dimensional index. Note that these
integrals are respectively mono and bi-dimensional, which limits the computational load.

This estimation problem is a Nobs × |P|+1-dimensional optimization problem, which can be numerically ex-
pensive if Nup and Nobs are large. The problem can be reduced by considering interactions up to a certain order.
However, the minimization problem is done off-line once for all. Then, the function Fs,j can be approximated
in a new point c̃(up) in the input parameter space by F̂s,j(c̃

(up)) defined with the explicit formula

F̂s,j(c̃
(up)) := θ̂s0,j +

∑
p∈P

Fp(c̃
(up)) · θ̂sp,j (20)

where Fp(c̃
(up)) is the Nobs dimensional vector

Fp(c̃
(up)) :=

(
kp(Xi, c̃

(up))
)
1⩽i⩽Nobs

i.e., the evaluation of the kp kernel at c̃(up) and the Nobs learning set points Xi. This analytical formula is
fast to compute: it has the complexity of a dot product once kp are evaluated. In practice, we will use Matern
kernels for kernels ka, a ∈ {1, · · · , Nup} , the parameters of the Matern kernel being fixed to a priori values so
that the kernel are computed with the formula (c1, c2) 7→ (1 + 2|c1 − c2|)e(−2|c1−c2|) .

Note that k0a in eq. (14) is needed to compute kp: the computation of the first integral EU∼Pa
[ka(Xi,a, U)]

in eq. (14) is done empirically through eq. (19) while the others have been computed once for all and stored,
reducing the computation time.

3. Population dynamics model of Salmonella infection, including host
inflammatory response

We now contextualize the previous methodology to a dynamic system describing Salmonella infection in the
gut lumen. This application example is a sound benchmark to show the potentiality of our method because 1)
it is a representative example of the intrinsic complexity of a system biology model of the gut by involving two
different metabolic models and 10 metabolites screened in time in two compartments, 2) the model involves stiff
dynamics after infection, making it sensitive to flux approximation errors and thus more difficult to approximate
by a metamodel.

3.1. Biological context of Salmonella infection.

Salmonella Thyphimurium uses a very complex mechanism to invade the gut. Let us characterized the
healthy gut homeostasis: it will emphasize by contrast how the pathogen colonizes the intestine lumen.
Healthy gut. The environment of a healthy gut is anaerobic: the commensal micro-organisms are then specialized
microbes relying on anaerobic metabolism to grow without oxygen. Actually, a main part of the gut microbiota
are strictly anaerobic, meaning that oxygen is harmful to them. With this anaerobic metabolism, the commensal
microbiota consumes fibre-derivated sugars (e.g.. glucose and galactose) and produces short-chain fatty acids
(SCFA) – mainly butyrate, acetate and propionate – that are absorbed by the host for its own metabolism. The
main energetic source for the intestinal cells is butyrate, which is metabolized together with the oxygen carried
to the intestine by the blood system. A virtuous cycle is then set up (see Figure 2a): the commensal microbiota
produces butyrate that is metabolized by the host with oxygen; consequently, this oxygen does not diffuse to
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the lumen ensuring hypoxia and a favorable habitat for the butyrate-producing anaerobes. Salmonella is not
very efficient in an anaerobic environment: the pathogen will have to hack this regulation mechanism, in order
to create a favorable niche and permit the invasion of the gut. [4, 28]
Colonized gut. When arrived at the gut lumen, the pathogen releases a virulence factor (sipA) that triggers
an inflammation in the epithelial cells (see Figure 2b). The host cells produce neutrophils: these immune cells
are sent into the gut lumen where they trap any bacteria they encounter (pathogenic bacteria but also SCFA-
producing symbionts). Then, the production of butyrate decreases, and this metabolite is no longer available
for the epithelial cells: the oxygen reaching the cells is no longer metabolized and starts flowing in the gut
lumen. This oxygen will be harmful for the butyrate-producing anaerobes, which initiates a vicious circle. The
oxygen will also oxydize nutrients present in the gut, providing very efficient energetic sources for the pathogen
alone, allowing it to take over from the commensal bacteria. Namely, galactose, glucose and thiosulfate will be
oxydized into galactarate, glucarate end tetrathionate. In the meantime, inflammation induces the production
of nitric oxyde, which is oxydated in nitrate, also very favorable for the pathogen [4,28]. Figures sketching these
mechanisms can be found in Fig. (2a-2b).

We will first build a population dynamics model of Salmonella infection. The commensal microbiota will
be represented by a unique strain of butyrate-producing bacteria: Faecalibacterium Prauznitzii. This bacteria
belongs to one of the dominant genera in the gut microbiota, and is widely studied in the context of probiotic
development [21]. The model proposed in this section is an adaptation of the works of Muñoz et al. [23], where
they model the human colon by dividing it in compartments that are treated as continuous-flow stirred tank
reactors (CSTR).

Our adaptation comes from a simplification of the colon into a single CSTR (called luminal compartment),
and the novelty comes from the inclusion of FBA for computing the growth rate and the addition of the
epithelial compartment representing the epithelium. We need to add the former to our set of equations in order
to model the Salmonella infection. Our model aims to reproduce the main steps of the Salmonella infection:
1) the neutrophils (immune system cells that sequester bacteria) release into the colon from the epithelial
compartment after the virulence factor triggers the inflammatory response; 2) the resulting drop of butyrate
producing bacteria which entails decreased butyrate levels; 3) the metabolic switch, induced by the butyrate
drop, of the epithelial cell from aerobic to anaerobic metabolism resulting in oxygen flow into the luminal
compartment of the oxygen that is not consumed; 4) the bloom of Salmonella growing in this newly aerobic
luminal compartment. A mathematical model describing the infection and the shift from an anaerobic to aerobic
environment in the colon has been introduced in [16] at a larger scale. The model we introduce here focuses on
the host-microbiota-pathogen metabolic interactions. Many parameters contained in ODE models are normally
estimated by fitting the model to experimental data. In view of the lack of it, we will content ourselves to
qualitatively representing the 4 steps introduced above that are hallmark of Salmonella infection [28], however,
some parameters can be known before hand, such as the hydraulic retention time.
State variables. The model is a compartment model: a first compartment describes the gut lumen while the
second stands for the epithelial cells. The luminal compartment describes the dynamics of the bacteria Sth

and Fprau, for Salmonella enterica Typhimurium and Faecalibacterium prauznitsii populations, nl, the luminal
neutrophils, and ml a vector containing all the metabolites concentrations of interest in the luminal compartment
that describe the nutritional environment. Vector ml is indexed by

i ∈ {Gal,Gluc,NO,GalO,GlucO,NO3, thio, tet, O2, but}

standing for, respectively, luminal galactose, glucose, nitric oxyde, galactarate (i.e. oxydized galactose), glu-
carate (i.e. oxydized glucose), nitrate, thiosulfate, tetrationate (i.e. oxidized thiosulfate), oxygen and butyrate.
Fprau consumes glucose and galactose and produces butyrate, whereas Sth consumes all of the metabolites ex-
cept butyrate. The instant rate at which these are consumed or produced is given by the resolution of the FBA
problem (see (2)) for each time step for each species. Nitric oxide has a special role in the host response to the
pathogen, since it will react with oxygen to form nitrate which boosts the growth of Sth and gives an edge to
Salmonella in the competition for resources [28].The epithelial compartment has 4 state variables: ne, NOe, O2e
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Figure 2. Simplified illustrations recapitulating the biological regulation in an healthy gut,
and S. Typhimurium colonization mechanisms.
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and bute representing neutrophils, nitric oxide, oxygen and butyrate, respectively. Each of these state variables
is transported to or from the luminal compartment, in order to model the host response effect in the colon to
the pathogen invasion. The vector me indexed by {NO,O2, but} will gather the epithelial metabolites.
Luminal compartment. The gut lumen is modelled as an open system, meaning that matter flows through it.
A working hypothesis is that the volume of the gut lumen is preserved at all times, meaning that a volume
entering the gut must be balanced by a volume going out, thus the gut lumen can be modelled as a reactor [11].
The rate of change of the concentration of a component inside the gut lumen depends then on the difference
between the input and output flow [23]. More precisely , let s be the concentration of a component of interest,
then Qin and Qout be the volumetric input and output flow, sin the concentration of the incoming flow, and V
the reactor volume.

∂ts =
Qinsin −Qouts

V
+ biological and chemical reactions

+ transport to epithelial compartment.

Particularly, under the constant volume hypothesis Qin = Qout = Q. Define D := Q
V as the dilution rate,

which is the inverse of the hydraulic retention time. Then we can write Qinsin−Qouts
V = (sin − s)D.

Recall from equation (4) that Fs(c
(up)
s ) maps the upper bound of consumption to the uptake rates of metabo-

lites for s ∈ {Sth, Fprau}. To couple Eq. (4) to the state equation, a relation between the state variable and the
consumption upper bound cup is needed. We then define

c(up)m (ml) = max

{
ml,m

Ldt(Sth1Sth
(ml) + Fprau1Fprau

(ml)) + ε
, Sm

}
(21)

where ml,m is the substrate metabolite m of the luminal metabolites ml, Ldt is a characteristic consumption
time, 1s(ml) is an indicator function indicating whether the bacteria s metabolizes the substrate m, ε is a small
regularization parameter and Sm is the maximal substrate uptake when the metabolite m is at saturation in
the media. As the upper bound c

(up)
s now depends on vector ml and bacterial densities, we will simply denote

Fs(ml, Sth, Fprau) the uptake rates of metabolites for species s. Note that this vector also includes the biomass
production rate, denoted by Fs,1(ml, Sth, Fprau). Analogously, vector Fs,ml

(ml, Sth, Fprau) is assembled from
the uptake rates of metabolites in ml. Finally, we introduce the diag(·) operator, which maps a vector of size
n to the corresponding diagonal matrix of size n.

∂tSth = (FSth,1(ml, Sth, Fprau)− ρnl −DSth
)Sth (22)

∂tFprau =

(
FFprau,1(ml, Sth, Fprau)− ρnl − α

O2l

KO2
+O2l

−DFprau

)
Fprau (23)

∂tnl = γn(ne − nl)− dnnl −Dnnl (24)
∂tml = D(min −ml) + FSth,ml

(ml, Sth, Fprau)Sth + FFprau,ml
(ml, Sth, Fprau)Fprau

+ βmlO2l + diag(γ)Tr(me,ml) (25)

where FSth
(resp. FFprau

) is the FBA metabolic model of the pathogen (resp. the commensal). The parameter
ρ represents the trapping by the neutrophils nl. The term α

O2l

KO2
+O2l

models the deleterious effect of the oxygen
level O2 on the obligate anaerobe Fprau, with a Michaelis-Menten dynamics using tuning parameters α and
KO2

. The terms DSth
and DFprau

indicate the passive dilution plus a bacteria specific death rate. The term
γn(ne − nl) represents the transfer process from the epithelial compartment. The term dnnl is the death rate
of neutrophils. Remark that mathematically we could have added the dilution rate (Dm) of neutrophils to its
death rate dn and have a single term, however since neutrophils also die in the epithelial compartment which
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has no dilution rate we decided to keep this explicit form. No entry of bacteria takes place, the bacteria getting
into the system through initial conditions.

In equation (25), the first term describes the metabolite inflow, with min a vector containing the concentration
in the small intestine of component ml and D the passive dilution rate common to all the inert metabolites. The
terms Fb,ml

(ml, Sth, Fprau)b for b ∈ {Sth, Fprau} correspond to the consumption or production of metabolites
due to the bacterial metabolism. The term βmlO2l corresponds to the oxidation reactions, where β is a
diagonal matrix with entries only in the index corresponding to the reduced-oxidized pairs, each metabolite of
a reduced-oxidized pair have the same coefficient, but with opposite sign, thus ensuring mass conservation. The
term diag(γ)Tr(me,ml) shows the transport process to the epithelial compartment. We have for the transfer
coefficient γ:

diag(γ)Tr(me,ml)i =

{
γ(me,i −ml,i) if i ∈ NO,O2, but

0 otherwise

Epithelial compartment. The 4 state variables of the epithelial compartment have the following dynamics

∂tne = Cbut,nne

(
ne − Ln

bute
Kbut + bute

)
(Ln − ne)− dnne + γn(nm − ne) + V F (Sth) (26)

∂tNOe = Cbut,NONOe

(
NOe − LNO

bute
Kbut + bute

)
(LNO −NOe)− dNONOe

+ γNO(NOl −NOe) + V F (Sth) (27)
∂tO2e = −λbutbuteO2e − dO2O2e + LO2 + γ(O2l −O2e) (28)
∂tbute = −λbutbuteO2e + γbut(butm − bute) (29)

The term Cbut,nne

(
ne − Ln

bute
Kbut+bute

)
(Ln − ne) in equation (26) (and the analogue term in eq. (27)) is a

bistable term with stable steady-state 0 and Ln, the threshold separating the attraction areas being Ln
bute

Kbut+bute
.

The threshold bute
Kbut+bute

tends to 1 when butyrate is abundant and drops to zero when butyrate level drops,
pulling the state variable towards 0 or Ln when ne exceeds this threshold. The term V F (Sth) is a Heaviside
function in order to simulate the virulence factor that Salmonella secrets triggering neutrophils and the nitric
oxide production. The terms dnne, dNONOe, and dO2O2e in equations (26), (27), and (28), respectively,
represent death terms. Terms γn(nm−ne) in equation (26) (and all its analogues in other equations) model the
transport process towards the luminal compartment, which couple these equations to Eq. (22)-(25). Finally
terms λbutbuteO2e in both equations (28) and (29) model the epithelial cell metabolism mainly based on butyrate
oxydation.

The system is supplemented with initial conditions Y0 that can be found in Table A.2. The system was
simulated in absence of Salmonella for 40 hours, time at which a pulse of Salmonella is added and models the
initial invasion. The model is solved with custom python scripts (see Sec. A in the Annexe). The FBA models
are taken from the literature: the Sth model is taken from [27] as provided by Cobrapy [9] while the Fprau

model is taken from [10]. The parameter values can be found in Table A.1.
In Figure 3 a simulation of the system can be found. The abundance of Sth, Fprau, and neutrophils is first

plotted (Fig. 3.a). Notice how the infection takes place at hour 40 and produces a spike of neutrophils in both
the luminal (Fig. 3.a, dark green curve) and epithelial compartment (Fig. 3.e, dark green). After the immune
response led by neutrophils we can observe the decline of Fprau and the rise of Sth achieving colonization. Plots
of Fig. 3.b, Fig. 3.c and Fig. 3.d show the metabolite concentrations in time in the luminal compartment.
Butyrate starts decreasing after Sth infection (Fig. 3.b, orange) because of the drop of Fprau, and eventually
the media becomes completely aerobic after hour 60 (Fig. 3.b, blue). This can be explained by observing
Fig. 3.e which illustrates how in the epithelial compartment the decreasing levels of butyrate allow oxygen
to accumulate and flow into the luminal compartment (blue), as shown in Fig. 3.f (blue) plotting the flow
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between compartments, i.e. γ(me − ml). The same can be observed for nitric oxide (Fig. 3.f, green) which
starts flowing into the luminal compartment from the beginning of the infection. The growth of Sth exhibits
two phases (Fig. 3.a, red): a first phase is mainly fueled by the depletion of thiosulfate (Fig. 3.c, purple), while
the second is more based on the consumption of oxidized molecules, allowed by the flow of oxygen, and nitrate
coming from the oxidation of NO. We note that oxygen actually recycles the end product of the metabolism
of the oxydized molecules, maintaining the favourable niche for Salmonella. We can see that the dynamical
system renders all the four steps of Salmonella infection as described in the literature (see Fig. 2b): 1) the
inflammation-induced raise of neutrophils 2) the consecutive drop of butyrate-producing bacteria and butyrate,
3) the switch to anaerobic metabolism in the epithelium and the resulting oxygenation of the lumen, favourable
niche for 4) the bloom of Salmonella.

In the remainder, we will use the notation

Y ode = (Sth, Fprau, nl,ml, ne, NOe, O2e , bute)

to designate the vectorial state variable of the whole dynamical system.

4. Learning database definition

The assembling of the learning database is linked to the question of sampling the feature space of the RKHS
method, which has dimension Nup = 9 in our application. Building a uniform sampling of a nine-dimensional
hypercube necessitates a high number of points to cover all the volume of the hypercube. To mitigate the
number of samples in the learning database, we adopt a supervised strategy: we sample the feature space in
the neighbourhood of feature time-series observed during different solutions of the ODE system (22)-(29). In
this way, the feature co-variance of our learning database is closer to the co-variance imposed by the dynamical
system structure. We then compute Nsim = 60 repetitions of the ODE system (22)-(29) with random initial
conditions sampled in uniform distributions (cf Table B.3 for parameter values), multiplied for the metabolites
of the luminal compartment by a Bernoulli distribution simulating their presence/absence to also simulate cases
where a metabolite is not initially present in the system.

From these Nsim = 60 replicates, we performed a time sampling of the state variables ml(i∆t), Sth(i∆t)
and Fprau(i∆t), i = 1, · · · , Nt from which we computed the corresponding FBA constraints using formula (21)
to get X1 after duplicate removal. The matrix X1 only contains constraints that have been observed during
the time course of the system dynamics. To enrich the database around these orbits, we then perturbed X1

with a multiplicative Gaussian noise (σ = 0.1), and selected samples with resulting all negative constraints (i.e.
substrate uptake) to get X2. The concatenation Xlarge of X1 and X2 leads to a database of Nobs = 47942
samples. We subsampled Xlarge by uniformly picking up 1000 samples. Since it is particularly important
from a biological point of view to capture the dynamics when a given metabolite is not limiting (i.e. when its
concentration is close to Sm in eq. (21)) and when is nearly depleted (i.e. when its concentrations gets close to
zero), we selected 1000 additional points by randomly taking 1000/(Nsub ∗2) additional samples in the first and
last decile of each columns of Xlarge to enrich the database in the distribution limits. We then finally obtained
a learning database X with Nobs = 2000 samples. Model outputs Y Fprau and Y Sth were assembled for each
species with the FBA model. The resulting distributions in X and Xlarge can be seen in B.10.

5. Hyperparameters selection

We now are ready to learn the metamodel, i.e. to solve (18) in order to find the parameters θ providing the
best trade-off between Y reconstruction and RKHS subspace selection.
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Figure 3. dFBA model of Salmonella infection. The output of the dFBA model of
Salmonella infection is plotted. The fate of the different model components is displayed in
the luminal and epithelial compartments. Butyrate and oxygen flows between epithelial and
luminal compartments is also plotted. The results can be read as follows: Plot a shows the
ecological dynamics, i.e. the abundance in time of the commensal microbiota and the pathogen.
Neutrophils appear after the infection at hour 40, which affects negatively Fprau and allows
the posterior Sth settlement. Plot b show how butyrate level drops after the infection, because
of the decrease in the Fprau population and how the colon becomes aerobic after hour 60.
Plots c and d show the dynamics of the reduced and oxidized metabolites. Notably thiosulfate
accumulates until the infection moment, and then is consumed by Sth, the rising levels of
nitrate are also linked to the presence of Sth and the available oxygen to transform nitric
oxide in nitrate. Plot e shows the behaviour in the epithelial compartment and one can see
how the butyrate level drops since the appearance of neutrophils, the oxygen accumulation
because of the reduced butyrate levels and the nitric oxide increased explained by the presence
of Salmonella that triggers its production. Plot f shows the flows between compartments to
show that indeed the accumulations or depletion of metabolites described before is linked to
exchanges between compartments. The different stages of the infection are then qualitatively
recovered by the ODE system.
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5.1. Selection of the group-lasso weight µ

For each species s = Sth, FPrau and model output j, we solve the problem (18) for

µ ∈ {0.0, .001, .01, .05, 0.075, .1, 0.15, .2, .3, .4, .5, .75, 1.0, 1.5}

and a subsample of Nobs = 400 observations of X and Ys and compute the loss Lµ,s,j , i.e. the relative
reconstruction error on a testing set (Xtest,Y

s
test) of Nobs = 300 unseen points of X

Lµ,s,j =
∥Ys

test,j − Ŷs
test,j|µ∥2

∥Ys
test∥2

where Ŷs
test,j|µ = F̂s,j|µ(Xtest).

We display in Figures 4 and 5 the respective resulting lasso-paths for Fprau and Sth. Namely, we compute
for each µ, species s and output j the norm np

µ,s,j = ∥θ̂sp,j|µ∥2 for p ∈ P, where second order interactions only
are considered in P, and derive their relative contribution np

µ,s,j/
∑

p∈P np
µ,s,j that is displayed in Figures 4 and

5. This relative contribution allows to display the groups p of θ̂sp,j|µ that vanish for increasing µ, and the groups
that remain non-null indicating input variables that are necessary to reconstruct the output j. In other words,
for increasing µ, the group-lasso penalty becomes preponderant, turning off the parameters corresponding to
the RKHS subspace p carrying the lower part of signal variance, which remains to perform variable selection.
In the meantime, the loss tends to increase when a group of θ is discarded, since the signal is approximated
in lower-dimensional subspaces. We are then seeking, for each output j, for the parameter µ providing the
best trade-off between signal reconstruction and reduced number of selected groups p, synonym of reduced
computational load and speed-up.

For Fprau (Fig. 4), we first observe that the lasso paths are very similar for the substrates (all the curves
are similar in the glucose and galactose plots), indicating that these sugars have a comparable fate in the FBA
model and similar influence on butyrate production (butyrate plots, the blue and orange plots are parallel).
To predict the growth (Fprau plot), both sugars and their interaction are needed to achieve correct predictions
(blue, orange and gray lines): the loss curve (dark blue line with stars) shows sharp increases when a group
is dropped off. Due to the reduced number of substrates for Fprau (Nup = 2), all groups are kept for the four
model outputs (see Table C.4 for selected µ).

For Sth (Fig. 5), input interactions are more complex. We first observe that O2 intake (blue curve) is
always preponderant for all model outputs plots, which is expected for this bacteria able to respire in aerobic
environment. Again, glucose and galactose plots are very similar, such as glucarate and galactarate (their
oxidated version). For these oxidated sugars, the loss increase (dark blue line with stars) is very limited when
groups are dropped-off, indicating that the two groups that are kept (O2,blue line, and galactarate, brown line)
are enough for a correct signal reconstruction. The same kind of observation is made for the nitric oxyde,
thiosulfate and tetrathionate plots. We next can see that O2 and nitrate are badly reconstructed (O2 and
nitrate plots, dark blue line with stars), even with the whole set of subspaces (more than 30% loss). Finally, for
Sth growth rate (Sth plot), we keep several groups of inputs, including O2, thiosulfate, tetrathionate, glucarate
and their interactions (see Table C.4 for selected µ).

5.2. Selection of the number of functional basis

For given regularization parameters µ, different numbers of functional basis can be involved in the approxi-
mation, i.e. according to the Representer theorem 2 different numbers of samples included in the learning set.
Again, a trade-off between reconstruction accuracy and computation speed is expected, since more functional
basis enlarges the discretized functional space where the optimum is searched in eq. (11), allowing for better
approximation, but at the cost of additional computations during each metamodel evaluation in (20).

For the µ previously selected, we then performed additional metamodel learnings for varying Nobs. We
took Nobs ∈ {50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700}. We then computed nrep = 5 repetitions of the
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Figure 4. Lasso path for Fprau. For each metamodel, the lasso path is displayed: the relative
contribution of the different blocks to the penalty is plotted for several values of the group lasso
penalty µ, together with the loss function value. Namely, we plot ∥θ̂sp,j|µ∥2/

∑
p∈P ∥θ̂sp,j|µ∥2 wrt

µ. For increasing µ, the group carrying less information vanish (i.e. its relative contribution goes
to zero), indicating that the remaining groups support the main part of the signal. Dashed dark
gray lines indicate order 2 interactions involving the displayed compound. Dashed light gray
lines indicate order 2 interactions that do not involve the displayed compound (i.e. involving
other compounds).

ODE system (22)-(29), for random initial conditions sampled with the same procedure than for the learning
set construction (see Sec. 4), and for the FBA model or its metamodel approximation in eq. (22) to (25).
The L2 relative reconstruction error between the dFBA solutions Y ode

FBA and their metamodel approximations
Y ode
mm|Nobs

is plotted in Fig. 6, together with the computation speed-up, i.e. the computation time ratio using
the metamodel in place of the FBA model.

We can observe that the best trade-off between speed-up and reconstruction error is obtained for 500 func-
tional basis. A higher number of basis increases the number of numerical operations and degrades the compu-
tation time while a lower number worsens the reconstruction error. More counter-intuitively, the speed-up is
decreased for low numbers of functional basis (Nobs ≤ 100). This is due to a higher number of blocks p ∈ P
that are conserved when the number of observation in the learning basis (i.e. the number of functional basis
in the RKHS) is reduced: the block-lasso penalty tends to conserve a higher number of blocks to preserve the
data reconstruction, which is mechanically decreased for lower numbers of samples in the learning set.

6. Validation of the selected RKHS metamodel

The accuracy of the selected RKHS metamodel is first assessed by testing the metamodel with the corre-
sponding FBA model on ntest = 1500 unseen points (Fig. 7 and 8). We can see that the large majority of points
lie in the vicinity of the line y = x, providing excellent R2 scores, with minimal value of 0.922 for the worst
reconstructed compound (nitrate for Sth).The worst approximation are mainly located near the boundaries of
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Figure 5. Lasso path for Sth. For each metamodel, the lasso path is displayed: the relative
contribution of the different blocks to the penalty is plotted for several values of the group lasso
penalty µ, together with the loss function value (dark blue line with stars). Namely, we plot
∥θ̂sp,j|µ∥2/

∑
p∈P ∥θ̂sp,j|µ∥2 wrt µ. For increasing µ, the groups carrying less information vanish

(i.e. its relative contribution goes to zero), indicating that the remaining groups support the
main part of the signal. Dashed dark gray lines indicate order 2 interactions involving the
displayed compound. Dashed light gray lines indicate order 2 interactions that do not involve
the displayed compound (i.e. involving other compounds).
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the domain, specially for Fprau. When looking at the FBA models responses for varying substrate constraints
(Fig. C.11a and C.11b), we can see that the model is quasi-linear for sugar consumption for Fprau, but the
behaviour is more complex for Sth, in particular for sugar consumption: sugar FBA uptake (y-axis) can vanish
whereas glucose or galactose remain in the media (non-null constraints, x-axis) indicating metabolic switches.
This behaviour is correctly predicted by the metamodel.

We then assess the metamodel approximation by comparing the ODE simulations with the FBA (plain
lines) and the metamodel (dashed lines, Figure 9). Some limited discrepancies can be observed. In Fig. 9.a,
Salmonella approximation accuracy is reduced in the second phase of growth, when Sth takes benefit of the
micro-aerobic environment. In the same plot around hour 60, the metamodel is slightly off for Fprau, inducing
a slight lag for butyrate production around T = 60 (Fig. 9.b, orange curves) which is reflected in the epithelial
densities (Fig. 9.e, orange) and trans-epithelial flow (plot 6, orange).

For metabolites, the time courses are particularly well reconstructed, except for glucose after T = 70h
which goes awry, reflecting that there was little glucose consumption predicted by the metamodel, whereas in
the original system it was completely consumed. Thiosulfate and tetrathionate are slightly off as well which
might be linked with the oxygen lag observed in Fig. 9.e and f (blue lines). Less oxygen goes into the luminal
compartment during the lag and the formation of tetrathionate by the oxidation of thiosulfate becomes impaired.
This mechanism should be observed for other reduced-oxidized pairs, however since they are less abundant the
effect might be attenuated.

Altogether, the behaviour of the metamodel is satisfactory in reproducing the dFBA system: it produces an
overall reconstruction error ∥Y ode − Ŷ ode∥2/∥Y ode∥2 of 4, 71% and it accurately renders all different phases of
Sth infection as observed in Fig. 3, such as Fprau and consecutive butyrate drop-off, O2 and NO flows between
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Figure 7. QQplot. The FBA model value F(c) (y-axis) is plotted against its metamodel
approximation F̂(c) (x-axis) for the Fprau model for 1600 unseen constraints c. The r2 score
is indicated for each output

epithelial and luminal compartments and the resulting two-phase growth of Sth. The metamodel furthermore
allows computation speed-up by 45, which is a considerable gain.

7. Discussion

7.1. Machine learning for accelerated computations of metabolic models.

An increasing number of studies [3,7,19] address the problem of modelling a community of micro-organisms
by concatenating strain-level genome-scale metabolic models. If this strategy is well-established for well-mixed
communities when one unique metabolic model can render the metabolic behaviour of the whole population
of a specific strain discarding any spatial heterogeneities, it faces computational difficulties in contexts with
important spatial structures: the metabolic model must be repeated at each spatial step, increasing linearly
the computational load with the number of cells in the spatial mesh. This observation grounds the need for
numerical accelerations of the metabolic model evaluations.

In this study, we adapted a machine learning method to the context of metabolic models, approximating
the metabolic model output at reduced computational costs. We provided a proof-of-concept showing that
RKHS-based metamodels are able to capture some non-linear effects exhibited by metabolic models (see Fig.
C.11b), so that replacing the FBA metabolic model by its metamodels only marginally impacts the time-course
of a system dynamics involving a metabolic model ( Fig. 9). The metamodel drastically speeds up the overall
time integration of the ODE system since integrating eq. (22)-(29) took in average 22 min and 27 s with the
FBA model but only 28 s with the metamodel. We expect that this approximation remains valid in a PDE
system.

The deployment of the RKHS method necessitates a careful selection of hyperparameters that strongly
impacts the trade-off between accuracy and computation load. The block-lasso regularization penalty mitigates
the number of blocks needed to provide accurate model reconstruction, which reduces the number of numerical
operations during metamodel evaluation, thus speeding-up the overall computations. Likewise, the number
of samples in the learning database is directly linked to the number of functional basis approximating each
ANOVA-RKHS subspaces: if a higher number of observations increases the accuracy, it mechanically degrades
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indicated for each output

the computation time. This tuning directly depends on the learning database and must be reproduced when
the learning set is changed.
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Figure 9. DFBA and metamodel approximation. The dFBA model is plotted (plain
lines) together with its metamodel approximation, i.e. the ODE model output where the FBA
model is replaced by its metamodel (dashed lines).

7.2. Learning dataset construction.

Metamodeling is specific in the framework of machine learning in that the learning dataset is not imposed
to the user: the user keeps the hand on the assembly of the learning dataset. Ones can then search for
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sound experimental planning by placing the points of the learning set in strategic areas of the state space.
One ’agnostic’ approach consists in sampling uniformly hypercubes of the input space: after defining upper
and lower bounds on the inputs, uniform sampling methods such as Latin Hypercube Sampling (LHS) or fast99
methods [13,26,29] can be deployed which provides suitable property for sensitivity analysis and computation of
descriptive index such as Sobol Index. We opted for a more ’supervised’ approach by sampling the feature space
around time trajectories of the ODE system we want to approximate: several time integrations are performed
based on random initial conditions which allows to compute FBA model inputs through eq. (21) that samples
the feature space. The learning database was further enriched by randomly sampling around these trajectories,
and by oversampling the borders of the hypercube (see fig. B.10).

Other strategies could be explored, by defining a generative statistical model of the points around the ODE
trajectories. For example, ones could simulate these point clouds with copulas, by coupling uniform sampling
of hypercubes with simulations of the empirical marginals of the observed points during the ODE time course.

7.3. Why using ANOVA-RKHS in our approach.

In this study, we opted for a specific RKHS method, based on ANOVA-RKHS. Unlike classical RKHS
metamodel that approximates the model in a unique functional space through the Representer theroem 2,
the ANOVA-RKHS method provides a theoretical metamodel the decomposition of which corresponds to its
Hoeffding decomposition. The metamodel approximation with a penalized least square method enables the
selection of the main effects and their interactions, leading to a more parsimonious metamodel. If this strategy
is more complex from mathematical and computational points of view, it allows reducing the dimension of the
input space by selecting the input variables that most influence the output variability. Besides the biological
interpretations that can be done based on this input-output interactions or the Sobol index that are directly
given by the ANOVA-RKHS method, variable selection also provides a better trade-off between reconstruction
accuracy and computation load. Indeed, the fixed number of samples in the learning dataset is more likely to
cover the feature space with reduced dimensions. In our context, the feature space has 9 dimensions for Sth,
and we could provide accurate predictions with 500 points. Working directly with classical 9-dimensional RKHS
might have necessitated a higher number of training samples to provide the same accuracy. On the contrary,
500 points provides a good sampling of 1 or 2-dimensional feature spaces as observed in the fp of eq. (17).
Benchmarking ANOVA-RKHS with other RKHS and other machine learning methods is kept as a perspective
for this work.

Additionally, ANOVA-RKHS could be compared or enriched with other functional spaces. In particular,
as the response curves of the metabolic models are quite regular except near the origin (see Figs. C.11a and
C.11a), other approximation methods could be investigated, such as polynomial regression models. This kind
of models could provide faster evaluations by compensating a lower number of functional basis by higher priors
on the response shape. Again, variable selection approaches could speed up metamodel evaluation on unseen
points.

7.4. Exploring other regularization penalties.

In eq. (11), we selected a classical group lasso penalty to regularize the optimization problem. This penalty
could be problematic in practice since it does not involve the ANOVA-RKHS norm, which is the norm that
theoretically ensures the existence of a solution through the Representer theorem 2. However, these difficulties
did not occur in the context of the computations presented here. Other regularizations were explored in [14,15]
and could be introduced in the future in our package. However, computing the ANOVA-RKHS norm involves
the computation of the square root of large (N2

obs) dense matrices (as many matrices as card(P)), which can be
expensive in computational time and memory, specially if high-order interactions are considered in the Hoeffding
decomposition. Hence, dimension reduction techniques or active learning could be coupled with the ANOVA-
RKHS method to select at the same time input variables (with the ridge-group-sparse penalty introduced in [14])
and the most informative samples in the testing test.
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8. Conclusion

In this study, we provided a proof-of-concept of the potentiality of machine learning methods to provide
fast approximations of metabolic model outputs: these metamodels could replace FBA models in large systems
biology models necessitating a massive number of FBA computations such as spatio-temporal models of micro-
bial communities. We leveraged existing metamodeling methods (ANOVA-RKHS), provided strategies for the
assembling of the testing dataset, set a framework for hyperparameter selection and assessed the accuracy of
the metamodel. Replacing the original FBA models by their metamodel in an ODE system dynamics model of
Salmonella infection in an healthy gut accelerated the computations by 45 with a relative error of about 5%.
This result makes reachable PDE models of microbial communities involving genome-scale metabolic models
such as FBA models, by approximating them with their metamodel.
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Parameter Description Units Value [reference]
ρ Death rate by unit of neutrophils [1/day] 0.3
α Maximum rate of oxygen’s noxious effect on

Fprau
[1/day] 0.2

Ks Half saturation constant of oxygen’s noxious
effect on Fprau

[mmol/l] 0.1

γO2
Transfer coefficient of oxygen between com-
partments

[1/day] 1

γNO Transfer coefficient of nitric oxide between
compartments

[1/day] 1

γbut Transfer coefficient of butyrate between com-
partments

[1/day] 1 [23]

γN Transfer coefficient of neutrophils between
compartments

[1/day] 1

βs s ∈ {Gal,Gluc, thio,NO} Coefficient for the rate of oxidation [day · mmol/l] −1 10
Ds s{Gal,Gluc, thio} Influx of molecules to the luminal compart-

ment
[mmol/l]/[day] 1/24

dn death rate of neutrophils [1/day] 0.01
dNO degradation rate of NOe in cells [1/day] 0.01
dO2

degradation rate of O2e in cells [1/day] 0.01
dbut degradation rate of butyrate in cells [1/day] 0.01
Kbut Half-saturation for the inhibition by butyrate [mmol/l] 1.5
LN Source term of neutrophils in epithelium [g/l] 0.1
LNO Source term of nitric oxide in epithelium [mmol/l] 0.01
LO2 Source term of oxygen in epithelium [mmol/l] 1

Table A.1. Values from literature are scarce. Most parameters were fitted manually and
measuring their actual value is beyond the scope of this work. The work of Muñoz et al. [23]
fitted some parameters such as the exchange rate for butyrate in the colon, so it was assumed
as the value of the transfer coefficient of other products. Note particularly that parameter D
represents the inverse of the hydraulic retention rate, which for a gut should be approximately
24 hours.

[37] Stefanie Widder, Rosalind J Allen, Thomas Pfeiffer, Thomas P Curtis, Carsten Wiuf, William T Sloan, Otto X Cordero,
Sam P Brown, Babak Momeni, Wenying Shou, et al. Challenges in microbial ecology: building predictive understanding of
community function and dynamics. The ISME journal, 10(11):2557–2568, 2016.

A. model parameters and code availability

The system dynamics (22)-(29) is parametrized with the coefficients included in Table A.1 and initial con-
ditions as indicated in Table A.2. The python code used for ODE system computation, and RKHS learning is
available at https://gitlab.inria.fr/slimmest/cemracs_results.git together with a tutorial on a toy model.

The FBA models are taken from the literature: the Sth model is taken from [27] as provided by Cobrapy [9].
Metabolite names were modified to match with [24]. The Fprau model is taken from [10]. The metabolite IDs
were also changed to keep consistent with the Sth model. Import reactions were further modified for consistency:
all sugar exchange reactions of the original model were knock-out, and import reactions were allowed for sugars
known to be metabolized by Fprau in the gut as described in [18].
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Parameter Description Units Value [reference]
Fprau Faecalibacterium prauznitsii [g/l] 1.56 · 10−2

Sth Salmonella enterica Typhimurium [g/l] 0 at t = 0 and 8.64 · 10−3 at t = 40h
ml,O2

Luminal oxygen [mmol/l] 0
ml,Gal Luminal galactose [mmol/l] 7.6 · 10−3

ml,GalO Luminal galactarate [mmol/l] 4.91 · 10−2

ml,Gluc Luminal glucose [mmol/l] 2.00 · 10−2

ml,GlucO Luminal glucarate [mmol/l] 4.02 · 10−2

ml,NO Luminal nitric oxide [mmol/l] 2.45 · 10−2

ml,NO3
Luminal nitrate [mmol/l] 3.10 · 10−2

ml,thio Luminal thiosulfate [mmol/l] 0
ml,tet Luminal tetrathionate [mmol/l] 2.19 · 10−2

ml,but Luminal butyrate [mmol/l] 0
nl Luminal neutrophils [mmol/l] 0
ne Epithelial neutrophils [mmol/l] 0
me,NO Epithelial nitric oxide [mmol/l] 0
me,O2

Epithelial O2 [mmol/l] 0
me,but Epithelial butyrate [mmol/l] 0

Table A.2. Initial conditions. Initial conditions have been sampled randomly as described
in Sec. 4. The resulting sampling is given here that were used in Fig. 3 and 9.

B. Learning database distribution

In this section, we indicate the parameters used for uniform sampling of the initial conditions of the 60
repetitions of the ODE system in the learning database definition in Table B.3. We then present the distribution
of the whole database (60 repetitions that are sampled in time, and enriched with perturbed inputs observed
during ODEs, see Sec. 4), and after sub-selection and enrichment near the boundaries in Fig. B.10.

C. Model and metamodel responses

We present in this section the value of the regularization parameter µ and the metamodel response for selected
µ compared with the FBA model response for a testing database of unseen points in Fig. C.11a and C.11b.
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State variable lower bound upper bound Bernouilli parameter
Fprau 0 0.02 -
Sth 0 0.02 -
ml,O2

0.001 0.05 0.85
ml,Gal 0.001 0.05 0.85
ml,GalO 0.001 0.05 0.85
ml,Gluc 0.001 0.05 0.85
ml,GlucO 0.001 0.05 0.85
ml,NO 0.001 0.05 0.85
ml,NO3

0.001 0.05 0.85
ml,thio 0.001 0.05 0.85
ml,tet 0.001 0.05 0.85
ml,but 0.001 0.05 0.85
nl 0 0 -
ne 0 0 -
me,NO 0 0 -
me,O2

0 0 -
me,but 0 0 -

Table B.3. Parameter of the random functions describing the intial conditions of
the 60 repetitions of the ODEs computed for the learning database. The lower and
upper bounds of the uniform distributions are indicated, together with the Bernouilli parameter
that models the presence/absence of the metabolite at t = 0 when relevant.
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Table C.4. Selected regularization parameter µ. Selected hyperparameter µ that tunes
the group-lasso penalty is indicated for each species (rows) and each model output (columns).
This parameter provides the best trade-off between signal reconstruction and reduced number
of RKHS subspace that are kept for reconstruction.
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Figure B.10. Marginal distributions in the learning database. We display for each
column 1 ⩽ c ⩽ Nup of the database Xlarge its marginal distribution (plain lines) together with
the marginal distribution of X (dashed lines) obtained after subsampling and enrichment near
the boundaries of Xlarge. As expected, the main modes of Xlarge are conserved in X, while
points in the first and last deciles (near the boundaries) are over-represented by construction
in X.
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Figure C.11. Model response. The FBA model value F(c) (blue dots) is plotted with its
metamodel approximation F̂(c) (orange dots, y-axis) for 1600 unseen constraints c (x-axis).
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