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Background

@ PhD - Inria Saclay & Institut Curie - supervised by Francgois Fages and Annabelle
Ballesta (defended february 2022)
» On learning mechanistic models from time series data with applications to
personalized chronotherapies
» Designed tools to learn chemical reaction networks (ODEs) from time series data
» Mechanistic model of circadian clock & PK-PD of irinotecan, an anticancerous drug

@ Prior to that, formation in mathematics, specifically data science & probabilities

@ Since february 2022, postdoc at Aalto University, Helsinki

» Probabilistic Machine Learning team
» Human-In-The-Loop Machine Learning for drug design



Modern Al

@ Amazing results in
classification, regression,
generation

that takes in a list of triangles specified by their 2D vertex
le color and outputs an SVG file that renders the triangles flat

@ Successfully took the human
out of the loop

Price to pay:

@ Tremendous amounts of
data (ChatGPT, DALL-E...)

A painting of a fox sitting in a field
at sunrise in the style of Claude Monet

@ Well-defined task to solve



Modern Al

@ Amazing results in
classification, regression,
generation

Write a st of triangles specified by their 2D vertex
outputs an SVG file that renders the triangles flat

shaded in their respective colors.

Sure! Here is a Python function that should do the job:

@ Successfully took the human
out of the loop

Price to pay:

@ Tremendous amounts of
data (ChatGPT, DALL-E...)

A painting of a fox sitting in a field
at sunrise in the style of Claude Monet

@ Well-defined task to solve

These requirements may not hold in health sciences
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Human-In-The-Loop Machine Learning

Field of research concerned with finding ways to elicitate and
integrate expert feedback into ML algorithms

@ Knowledge elicitation

» What is the most informative way to query an expert about a precise topic?
» Sequential querying strategies: active learning, bayesian experimental design
» Information theory

@ Probabilistic expert feedback observation model of...

» Binary response
» Human latent utility function
» Interactions between multiple experts

Highly beneficial in the small data regime.



Today’s talk

ﬂ Improving genomics-based predictions for precision medicine through active
elicitation of expert knowledge

9 Towards a safe integration of expert feedback in Bayesian Optimization

e Human-In-The-Loop Bayesian Optimization for de novo drug design



Improving genomics-based predictions for precision
medicine through active elicitation of expert knowledge

After Sundin et al, Bioinformatics, 2018

Small n large p data

Expert knowledge elicitation loop on a budget

Leaming algorithm selects Expert feedback
a drug-feature pair () Relevant +
+ - () Relevant -
¥ | i I Relevant
() Not relevant
- Few observed responses n (J 1 don't know
- Large number p of genomic
features with unknown relevance Update prediction
model
H EEm
|

Improved predictions
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Predicting quantitative traits based on genomic features
using sparse bayesian linear regression

Input: genomic features X € RN*M - output: traits Y € RN*P, M > N
Yna ~ A (WjXy, 07)
Sparsity taken into account with a spike-and-slab prior:

Encodes if m is relevant for d

Ydm ™~ Bernou“i(f)d) Slab
—
Wi ~ Yam VO, + 1= Yim)bo
TSpike atwg,, =0

Hyperpriors:
0,2 ~ Gamma(ay, By)
pa ~ Beta(a,, Bp)
Tgm ~ LOg— N (, @?)



Posterior distribution of the parameters
0=(w,y,p, 1% 0% w e RMXD 5y e RMXD p e RP, 7 € RMXP 52 € RP

Bayes rules yields:

p(YIX, w, a®)p(wly, ™)p(ylp)p(p)p(t*)p(a?)
p(Y1X)

p(OlY, X) =

Predictive distribution:

PO, X,%) = [ p(ix, o e)p(ely, X)do
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Incorporating expert feedback
An expert is asked to provide a binary answer regarding two questions:

@ Is feature m relevant for the prediction of trait d? frel {0,1}

@ Does feature m act positively or negatively on trait d? fd'r {0,1}
Recall that:

. m "~ Vdm /V(O/ Tfl,m) + (1 - Vd,m)éo
Encodes if m

is relevant for d

gf}n ~ Vam Bernoulli( E') + (1 - y,,,)Bernoulli(l — 'Y

T Probability of the expert being correct

dir

am ~ Lw, >0 Bernoulll(nd'r) + 1y, <0 Bernoulli(1 — nd”)

For simplicity: %" = 7’ = 7ty ~ Beta(a, )



Final model

el e >@
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0 =w,y,p, 12,02 )

p(YIX, w, a®)p(wly, T)p(yp)p(p)p(t?)p(c?)

0|Y,X,F) =
PO, X, F) P(YIE, X)

X p(Fly, w, m)p(n)

7t controls how strongly the model will change to reflect expert feedback
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Experimental design for active expert knowledge elicitation

Experts don't have time to provide feedback about every sample.
— Find the most informative (trait, feature) candidate pair to show to the expert.
Informative? Can mean many things "\_(¥)_/~

Here: Informativeness of expert feedback measured by KL divergence between
predictive distributions before and after observing feedback. Let &; = (Y, X, Fy),

gt = KL [p@alxns D, Fifs M@ alxn, Zi)]

N
(d*,m") = argmax E, 2 ndmt
(d,m)¢F;_q ,2?,51/ fdlr |gt 1 nz:l

T predictive distribution of feedbacks




Baselines

@ Sequential experimental design

@ Targeted sequential experimental design

(d,m*) = argmax Ezel zir .
Am)F,y dm T dm IJH[ ,mt]

with ug,; = KIL[p@al%, Zioa, fi2, FEmlp@al%, Zi1)]
— Focus on improving the prediction over the current sample 7, not globally.

@ Random uniform sampling of the next pair not yet queried (d, m) ¢ F;_;
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Metabolite concentration prediction and simulated experts

Predicting concentration of D = 4
standard metabolites:
HDL-C, LDL-C, TC, TG .

N = 3918 individuals, M = 3107 SNPs

0.998

Random sequential sampling

0996 o Targeted sequontia expermenial desin
Simulated expert feedback using GWAS 0904 - —%— All feedbacks
meta-analysis over 24925 individuals. W oo |
=
@ relevant SNPs per output metabolite: 099
p<23x107 = 13,46,39,11 0.988 |
@ irrelevant: 0.986 |-
p>0.9 = 1010, 859, 620, 628. ooes < e e e =
@ dir. feedback: regression weights number of feedbacks

from meta-analysis
12428 possible queries (3109x4)



Drug sensitivity prediction for multiple myeloma patients
Real expert feedback
@ N = 44 patient samples, M = 2942 genomic features, D = 12 drugs.

@ Experts feedback on the relevance of genomic features for drug sensitivity.

@ Feedback only collected on 162 gene mutations causally involved in cancer.
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Drug sensitivity prediction for multiple myeloma patients
Real expert feedback
@ N = 44 patient samples, M = 2942 genomic features, D = 12 drugs.

@ Experts feedback on the relevance of genomic features for drug sensitivity.

@ Feedback only collected on 162 gene mutations causally involved in cancer.

Doctoral candidate

—©— Targeted sequ:

2
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Number of expert feedbacks Number of expert feedbacks

Nondecreasing MSE w.r.t. number of expert feedbacks? s

Expert were assumed to be right on 19 out of 20 feedbacks: = ~ Beta (19,1)



Towards a safe integration of expert feedback in
Bayesian Optimization

Petrus Mikkola, Julien Martinelli, Louis Filstroff, Samuel Kaski,
accepted for publication at AISTATS2023.
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Multi-Fidelity BO is not robust to unreliable Information Sources
Hartmann6D
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@ Both relevant and irrelevant AIS have a cost 5xcheaper than objective.
@ SF-MES: Single-Fidelity BO w/ Maximum Entropy Search Acquisition Function
° : Multi-Fidelity BO w/ Maximum Entropy Search Acquisition Function



Multi-Fidelity BO is not robust to unreliable Information Sources

Hartmann6D
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Multi-Fidelity BO is not robust to unreliable Information Sources
Hartmann6D
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@ Main aim of our contribution: robustness to irrelevant AlS...
@ ..While still accelerating convergence for relevant AIS (otherwise, just do BO)



Introducing robust MFBO (rMFBO), defensive acquisition strategy
We modify the BO loop with a building block added on top of any MFBO method.
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Introducing robust MFBO (rMFBO), defensive acquisition strategy
We modify the BO loop with a building block added on top of any MFBO method.

@ Two separate GPs: MOGP pyr, omel ZMF and a GP g, o trained using a pseudo
dataset of objective queries only ZP5F

(X?/IF/ ft) = argmax a(xl leMF/ OMF, QMF)
xeZ’ Le{obj, AIS}

SF .
(Xlt3 ’ ObJ) = argmax a(XLuSF/ OSsF, QPSF)
xeZ’
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Introducing robust MFBO (rMFBO), defensive acquisition strategy
We modify the BO loop with a building block added on top of any MFBO method.

@ Two separate GPs: MOGP e, omelZ2MF and a GP s, os trained using a pseudo
P H U
dataset of objective queries only Z7P°F
J y
(X?/IF/ ft) = argmax a(xl leMF/ OMF, QMF)
xeZ’ Le{obj, AlS}
(", obj) = argmax a(x|sg, osp, ZP%F)
xeZ
° GMF(X?SF, obj) < ¢ — Do | trust my joint model at the objective?

o sXMF ¢)>c — Is my joint model suggestion informative enough?
t ot 2 Y) g8 g
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Introducing robust MFBO (rMFBO), defensive acquisition strategy
We modify the BO loop with a building block added on top of any MFBO method.

@ Two separate GPs: MOGP pyr, omel ZMF and a GP g, o trained using a pseudo
dataset of objective queries only ZP5F

(X?/IF/ ft) = argmax a(xl leMF/ OMF, QMF)
xeZ’ Le{obj, AlS}

(", obj) = argmax a(x|sg, osp, ZP%F)

xXeZ
° GMF(X?SF,obj) < — Do | trust my joint model at the objective?
o s(xXMF,2) > ¢, — Is my joint model suggestion informative enough?

@ Upon satisfaction: query (xMF, ¢,) and add pseudo-observation of objective:
DPSF — (P, e (xP>F, obj)) — What if we had queried the objective?

@ Otherwise, query (foF, obj)
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Theorem

Upon classical assumptions for deriving regret bounds in the BO litterature:

For any auxiliary information source, the difference in regrets achieved by SFBO
and rMFBO can be bounded with a high, controllable probability.
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Results
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Results
XGBoost hyperparameter tuning - relevant AIS | Rosenbrock 2D - irrelevant AIS

XGBoost 5D

—e— SE-MES
B MEMES
—— MF-MES

o SF-GIBBON
—8— ME-GIBBON
—— IMF-GIBBON

10-*

o— MF-MES —— 1MF-MES —o— SF—I\IESJ

]
&

107!

regret

=10t o

107"

Simple

7107

10°°

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Budget Budget Budget

Simple regret

1072
1.00

0 10 20 30 1 0 60
Budget

Tuning 5 hyperparameters for a
regression task on a Diabetes dataset

510.75

5110.50

target: 100 decisions trees; ais: 10
decision trees

We use the same settings in our algorithm for these two cases!



Multiple Information Sources of varying relevance - 2D case
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Human-In-The-Loop Bayesian Optimization for de novo
drug design

Work In Progress "\_(*)_/~
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De novo drug design
Inverse problem: find a molecule x* that maximizes a given property f

x* = argmax fo(x)
xeZ’

@ Black-box, expensive-to-evaluate, function optimization problem.
@ Search over the whole molecular space 2 a large discrete space (= 10%).
@ Usually we only have access to a database 2, ¢ 2.

@ It might not hold that x* € #,, it might even not have been synthesized yet!

— Solution: Deep generative models.
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Latent space optimization using Variational Auto Encoders (VAES)

3 L ¥

Encoder Latent space Decoder

Gomez-Bomberelli et al, 2018
Starting from an unsupervised database &7, a VAE learns:
@ Aprobabilistic encoder from x into a latent code z ~ g4(-[x), z€ Z C R,

@ A probabilistic decoder from z to x ~ py(:|z).
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Latent space optimization using Variational Auto Encoders (VAES)

TR

Encoder Latent space Decoder

Gomez-Bomberelli et al, 2018
Starting from an unsupervised database &7, a VAE learns:
@ Aprobabilistic encoder from x into a latent code z ~ g4(-[x), z€ Z C R%,
@ A probabilistic decoder from z to x ~ py(:|z).
Property optimization in latent space corresponds to

z* = argmaxgy(z) := By, ([ fo(x)] continuous optimisation!
zeZ

Generative approach: go(z*) is highly likely not to belong to 7.
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Current challenges in Latent Bayesian Optimization

@ Lack of "functional smoothness”: The latent space doesn’t account for the
objective fg, thus f, can be highly non-smooth over Z".
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Current challenges in Latent Bayesian Optimization

@ Lack of "functional smoothness”: The latent space doesn’t account for the
objective fg, thus f, can be highly non-smooth over Z".

@ Expertare not integrated in the optimization process: querying the function
fo can be very expensive. Experts can help uncover f.

We propose to kill two birds with one stone using preferential elicitation.

Experts f1, ..., f4 have different goals and areas of expertise — need a model
defining the correlation structure between f, f1, ..., f4.
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Preferential expert elicitation
Dataset & = {x; > x}}i_;. x; > X} isa RV. with value 1 when x; is preferred to x/, o.w. 0.

preferences

0.35 .5
0.2=0.35
0.2~ 0.6
0.8~ 0.7

Preference Preference-aware
elicitation latents

q Latent-
Bayesian
%%ZO:ZOF PRI Variable
t] t]
Optimization Modeling

N NS

Expert Preference
feedback data

Ways to model them: probit likelihood, sign constraints on the derivatives.
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Preferences as gradient sign observations

Preferential queries for f; can be thought of as observations sgn(d, f;(2)).
These can be modeled and inform us on f;.

[ f1(2) ]

Ful2)
aZf .1 (Z)

19, fu(2)

K(z,z") | d,K(z, z")

~ G710,

2,K(z,2") | 92,K(z,2")

Where K(z,z") = (cov[f(2), fi(z")D1<ij<m € R™™: “low-rank” correlation structure

between experts.

A We do not observe d,f(z) but sgn(d, f(z)).
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Property-aware latent space

Use preferential queries to enforce functional smoothness over latent space:

p(z)

An idea would be to learn a mapping iy, : Z° — Z” as an invertible neural net sit.
z" = hy(ENC(x)). P would be learned using expert feedback.
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Conclusion
@ Expert knowledge can be integrated through probabilistic modeling and
advanced query strategies.

@ One cornerstone of HITL-ML is BO, which we made robust to unreliable
information sources, thus paving the way for integration of human feedback.

@ Currently tackling the case of multiple, correlated experts, to enhance latent
space optimization.
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Conclusion
@ Expert knowledge can be integrated through probabilistic modeling and
advanced query strategies.

@ One cornerstone of HITL-ML is BO, which we made robust to unreliable
information sources, thus paving the way for integration of human feedback.

@ Currently tackling the case of multiple, correlated experts, to enhance latent
space optimization.

One perspective: take BO to real-world applications using HITL
Classical issue: effect of confounders (e.g. temperature, light..) on objective

@ BO with a list of m confounders each with a different query cost
@ Human-In-The-Loop to select which confounder to measure

@ Case study brought by material scientists
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