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Introduction Time Series Data Reaction Network inference algorithm Results

Mechanistic Model Learning

The Machine Learning area provides tools to analyze time series
data and yield predictions. Classical examples are Recurrent Neural
Networks.

While these predictions can be accurate, they do not come
with an interpretation
We say that the model is Black Box

On the contrary, Mechanistic Model Learning aims at achieving the
same predictive results while being explainable

(XAI : Explainable Artificial Intelligence)
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Some attempts at Mechanistic Model Learning

DREAM3 (2008) - Network Inference Challenge

Logic programming combined with prior knowledge on the network’s
structure allows to learn the boolean function responsible for each
species
Boolean Network Identification from Perturbation Time Series Data combining
Dynamics Abstraction and Logic Programming. L. Pauleve et al.

Evolutionnary Algorithms : based on the minimization of a fitness
criterion measuring the difference between the observed data and
the proposed mechanistic models
Inferring Reaction Networks using Perturbation Data. H. Sauro et al.

TimeDelay-ARACNE: Reverse engineering of gene networks from
time-course data by an information theoretic approach
P. Zoppoli et al.
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Toward Personalized Chronotherapies at INSERM U935

In the biomedical case, predictions are required for instance to
determine the optimal hour of drug delivery.

Moreover, in the case of Personalized Medicine, we want to
learn a model of the patient

Learning a mechanistic model would give these predictions
consistency through the understanding of the biological
processes underneath

We aim at learning not only parameters but also model
structure
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The Problem of Reaction Network Inference

Input : observed time-series data from biological experiments such as
proteomic data.

Output : a set of reactions defining a modelM reproducing similar time-series
data

Molecular Species

A B C D

Wi =


A(t0) B(t0) C(t0) D(t0)
A(t1) B(t1) C(t1) D(t1)
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Inferred set of reactions
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Chemical Reaction Network (CRN)

Hypothesis : Stoichiometry coefficients are less or equal to 1.

Definition
A reaction j is a triplet (Rj ,Pj , hj)
Rj is the set of reactants
Pj the set of products
hj is the rate function

A CRN is a set of reactionsM = (Rj ,Pj , hj)16j6J

A catalyst is a species B ∈ Rj
⋂
Pj

Example

R = {A} P = {B} h : x 7−→ k · x

k ∗ A for A =⇒ B
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Simulated Data from Minimal Mitotic Oscillator

Kinase

Cyclin

Ø

Ø Ø

KinaseP

ProteasePProtease

Goldbeter,
1991 -
Biomodels
Repository

0.02Cyclin for Cyclin =⇒ _

0.025Cyclin for _ =⇒ Cyclin

3
KinaseP

0.005+ KinaseP

Cyclin

0.5+ Cyclin
for KinaseP + Cyclin =⇒ Kinase + Cyclin

1.5
Kinase

0.005+ Kinase
for Kinase =⇒ KinaseP

Kinase · Protease
0.0051+ Protease

for Protease + Kinase =⇒ ProteaseP + Kinase

0.5
ProteaseP

ProteaseP + 0.005
for ProteaseP =⇒ Protease

0.25
Cyclin

0.02+ Cyclin
for Cyclin + ProteaseP =⇒ ProteaseP
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Stochastic Simulation Algorithm

We consider stochastic simulation traces from an hidden model
(Continuous time Markov chain)

0 20 40 60 80 100
Time

0

20

40

60

80

100

Cyclin
Kinase
KinaseP
Protease
ProteaseP

Numerical simulation using the Gillespie Algorithm - Minimal Mitotic Oscillator
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Adding Subsampling to traces

Subsampling hypothesis : We do not observe every transition from
the Markov chain simulation, only a sample of them every
∆t = 5mins

→ Therefore we do not observe reactions one by one but macro
transitions.
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t = 5mins
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Adding Noise to traces

Multiplicative Gaussian noise is added to the predecessor state and
the successor state.

Xmeas = Xsim ∗ ew where w ∼ N (0, σ) and σ = 0.003

→ A species more present than another will then be more noisy.

Noise is then suppressed by rounding to the closest integer.
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Workflow of the learning algorithm


A(t0) B(t0) C(t0) D(t0)
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Clustering of the Observed Macro Transitions

Finite differences between the successor state and the predecessor
state are computed while predecessor and successor state are stored.

Example


32
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6

→

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Macro transition (Pi , Si ) and associated difference vector δi = Si − Pi
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Macro Transitions Clustering based on difference vectors

Clustering as a way to extract information from the dataset
→ We choose the K-medoids algorithm with the squared euclidean
distance

Start with randomly chosen centroids and update the clusters :

Ck = {δi s.t argmin
δ∈M

||δ − δi ||22 = Mk}

Then the centroids are updated

Mk = argmin
δ∈Ck

1
|Ck |

∑
δi∈Ck

||(δ − δi )||22

Repeat until the partitioning reaches a stable state

Centroids are actual members of the dataset

13 / 27



Inferring reactions from the centroids
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Results on Minimal Mitotic Oscillator (Goldbeter, 1991)

R5

R1 R2R3

R4

Cluster1

Cluster 2

Cluster 3 Cluster 4

Cluste
r 5

R1 : ProteaseP =⇒ Protease
R2 : Kinase + Protease =⇒ ProteaseP + Kinase

R3 : Cyclin + KinaseP =⇒ Kinase + Cyclin
R4 : ProteaseP + Cyclin =⇒ ProteaseP

R5 : Kinase =⇒ KinaseP
R6 : =⇒ Cyclin
R7 : Cyclin =⇒

Kinase

Cyclin

Ø

Ø Ø

KinaseP

ProteasePProtease

1
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Model Selection Step

Choosing the right aggregated network amounts to choosing
the optimal number of clusters k

The reaction inference algorithm outputs a set of reactions,
defining a generative model M̂

Model quality can be assessed by comparing the distribution of
M to the one described by M̂
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Model selection protocol
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6 variables Cell Cycle Model (Tyson, 1991)

Ø

cdc2-cyclin
~{p1,p2}

cdc2-
Cyclin~{p1}

cdc2

cyclin~{p1}

cdc2~{p1}

Øcyclin

Cdc2 =⇒ Cdc2 ∼ {p1}
Cdc2 ∼ {p1} =⇒ Cdc2

Cdc2-Cyclin ∼ {p1, p2} =⇒ Cdc2-Cyclin ∼ {p1}
Cdc2 ∼ {p1}+ Cyclin =⇒ Cdc2-Cyclin ∼ {p1, p2}
_ =⇒ Cyclin

Cyclin ∼ {p1} =⇒ _

Cdc2-Cyclin ∼ {p1} =⇒ Cyclin ∼ {p1}+ Cdc2

Cdc2-Cyclin ∼ {p1, p2}+ 2 ∗ Cdc2-Cyclin ∼ {p1}
=⇒ 3 ∗ Cdc2-Cyclin ∼ {p1}

mean transition difference vector max transition difference vector
Cyclin 3.3 45

Cyclin∼{p1} 1.02 2
Cdc2 53.54 853

Cdc2∼{p1} 50.3 840
Cdc2-Cyclin∼{p1} 6.43 123

Cdc2-Cyclin∼{p1,p2} 4.7 122
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6 variables Cell Cycle Model (Tyson, 1991)

Ø

cdc2-cyclin
~{p1,p2}

cdc2-
Cyclin~{p1}

cdc2

cyclin~{p1}

cdc2~{p1}

Øcyclin

Cdc2 =⇒ Cdc2 ∼ {p1}
Cdc2 ∼ {p1} =⇒ Cdc2

Cdc2-Cyclin ∼ {p1, p2} =⇒ Cdc2-Cyclin ∼ {p1}
Cdc2 ∼ {p1}+ Cyclin =⇒ Cdc2-Cyclin ∼ {p1, p2}
_ =⇒ Cyclin

Cyclin ∼ {p1} =⇒ _

Cdc2-Cyclin ∼ {p1} =⇒ Cyclin ∼ {p1}+ Cdc2

Cdc2-Cyclin ∼ {p1, p2}+ 2 ∗ Cdc2-Cyclin ∼ {p1}
=⇒ 3 ∗ Cdc2-Cyclin ∼ {p1}

Reaction recovered are precisely the four fastest ones hence
those with the highest probability to occur when possible
(False Positive : 0%, False Negative : 50%)

The gap between kinetic parameters values results in a
slow/fast dynamic, a limit of the stochastic approach.
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Subsampling effect on learning
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Rules including catalysts are inferred without the latter : more
false positives

Scarce reactions such as _ =⇒ A are inferred : less false
negatives

As the subsampling step grows, more false positives appear.

26 / 27



Introduction Time Series Data Reaction Network inference algorithm Results

Conclusion and Perspectives

Unsupervised reaction inference algorithm dealing with
subsampled and noisy time-series data

The algorithm finds original reactions

But also misses other original reactions (false negatives)

→ high precision but low recall

Perspectives:

Case where not all species are observed (Elisabeth Degrand’s
Master Thesis - Evolving CRN)
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