# Unsupervised learning of chemical reaction networks from Time Series Data

Julien Martinelli

December, 19th 2018

François Fages

Annabelle Ballesta





Introduction

#### Mechanistic Model Learning

The Machine Learning area provides tools to analyze time series data and yield predictions. Classical examples are Recurrent Neural Networks.

Reaction Network inference algorithm

- While these predictions can be accurate, they do not come with an interpretation
- We say that the model is Black Box

On the contrary, Mechanistic Model Learning aims at achieving the same predictive results while being explainable

(XAI : Explainable Artificial Intelligence)

Introduction

# Some attempts at Mechanistic Model Learning

- DREAM3 (2008) Network Inference Challenge
- Logic programming combined with prior knowledge on the network's structure allows to learn the boolean function responsible for each species
  - Boolean Network Identification from Perturbation Time Series Data combining Dynamics Abstraction and Logic Programming. L. Pauleve et al.
- Evolutionnary Algorithms: based on the minimization of a fitness criterion measuring the difference between the observed data and the proposed mechanistic models
  - Inferring Reaction Networks using Perturbation Data. H. Sauro et al.
- TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach P. Zoppoli et al.

- In the biomedical case, predictions are required for instance to determine the optimal hour of drug delivery.
- Moreover, in the case of Personalized Medicine, we want to learn a model of the patient
- Learning a mechanistic model would give these predictions consistency through the understanding of the biological processes underneath
- We aim at learning not only parameters but also model structure

Introduction

00000

#### The Problem of Reaction Network Inference

Input: observed time-series data from biological experiments such as proteomic data.

Output: a set of reactions defining a model  $\mathcal{M}$  reproducing similar time-series data

$$W_i = \begin{pmatrix} A_i & B_i & C_i & D_i \\ A(t_0) & B(t_0) & C(t_0) & D(t_0) \\ A(t_1) & B(t_1) & C(t_1) & D(t_1) \\ \vdots & \vdots & \vdots & \vdots \\ A(T_i) & B(T_i) & C(T_i) & D(T_i) \end{pmatrix}$$

Time series Data





Inferred set of reactions

# Chemical Reaction Network (CRN)

Hypothesis: Stoichiometry coefficients are less or equal to 1.

#### Definition

A reaction j is a triplet  $(R_i, P_i, h_i)$ 

 $R_i$  is the set of reactants

 $P_i$  the set of products

 $h_i$  is the rate function

A CRN is a set of reactions  $\mathcal{M} = (R_i, P_i, h_i)_{1 \le i \le J}$ 

A catalyst is a species  $B \in R_i \cap P_i$ 

#### Example

$$R = \{A\}$$
  $P = \{B\}$   $h: x \longmapsto k \cdot x$ 

$$k * A \text{ for } A \Longrightarrow B$$

#### Simulated Data from Minimal Mitotic Oscillator



Goldbeter, 1991 -Biomodels Repository

 $\begin{array}{c} \textit{Cyclin} \implies \_\\ \implies \textit{Cyclin} \end{array}$ 0.02 Cyclin for 0.025 Cyclin for KinaseP Cyclin  $KinaseP + Cyclin \implies Kinase + Cyclin$  $0.0\overline{05 + KinaseP} \ \overline{0.5 + Cvclin}$ Kinase ⇒ KinaseP Kinase · Protease for  $Protease + Kinase \implies ProteaseP + Kinase$ 0.0051 + ProteaseProteaseP ProteaseP + 0.005for  $ProteaseP \implies Protease$ for  $Cyclin + ProteaseP \implies ProteaseP$ 

Results

## Stochastic Simulation Algorithm

We consider stochastic simulation traces from an hidden model (Continuous time Markov chain)



Numerical simulation using the Gillespie Algorithm - Minimal Mitotic Oscillator

### Adding Subsampling to traces

Subsampling hypothesis: We do not observe every transition from the Markov chain simulation, only a sample of them every  $\Delta t = 5 mins$ 

Reaction Network inference algorithm

→ Therefore we do not observe reactions one by one but *macro* transitions.



#### Adding Noise to traces

Multiplicative Gaussian noise is added to the predecessor state and the successor state.

Reaction Network inference algorithm

$$X_{meas} = X_{sim} * e^{w}$$
 where  $w \sim \mathcal{N}(0, \sigma)$  and  $\sigma = 0.003$ 

 $\rightarrow$  A species more present than another will then be more noisy.

Noise is then suppressed by rounding to the closest integer.

# Workflow of the learning algorithm



#### Clustering of the Observed Macro Transitions

Finite differences between the successor state and the predecessor state are computed while predecessor and successor state are stored.

#### Example 1

$$\begin{pmatrix} 32 \\ 19 \\ 88 \\ 57 \\ 6 \end{pmatrix} \rightarrow \begin{pmatrix} 32 \\ 24 \\ 82 \\ 49 \\ 14 \end{pmatrix} \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ ProteaseP \\ Protease \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 5 \\ -6 \\ -8 \\ 8 \end{pmatrix} \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ ProteaseP \\ Protease \end{pmatrix}$$

Macro transition  $(P_i, S_i)$  and associated difference vector  $\delta_i = S_i - P_i$ 

Results

#### Macro Transitions Clustering based on difference vectors

Clustering as a way to extract information from the dataset  $\rightarrow$  We choose the *K-medoids* algorithm with the squared euclidean distance

Start with randomly chosen centroids and update the clusters :

$$C_k = \{\delta_i \text{ s.t. argmin } ||\delta - \delta_i||_2^2 = M_k\}$$

• Then the centroids are updated

$$M_k = \operatorname*{argmin}_{\delta \in C_k} \frac{1}{|C_k|} \sum_{\delta_i \in C_k} ||(\delta - \delta_i)||_2^2$$

• Repeat until the partitioning reaches a stable state

Centroids are actual members of the dataset

```
\begin{pmatrix} 0 \\ -7 \\ 6 \\ 2 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ Protease \end{pmatrix}x^* = \underset{species}{\operatorname{argmin}} x^i
```

```
\begin{pmatrix} 0 \\ -7 \\ 6 \\ 2 \\ -3 \end{pmatrix} \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ ProteaseP \end{pmatrix}
x^* = \underset{species}{\operatorname{argmin}} x^i
```

```
\begin{pmatrix}
0 \\
-7 \\
6 \\
2 \\
-3
\end{pmatrix}
\begin{pmatrix}
Cyclin \\
Kinase \\
KinaseP \\
ProteaseP \\
Protease
\end{pmatrix}
```

Collect every  $x^i$  s.t. $\left|\frac{x^*}{x^i}\right| \le \alpha$ 













```
Cyclin
 Kinase
KinaseP
ProteaseP
Protease
```







Collect every  $x^i$  s.t. $\left|\frac{x^*}{x^i}\right| \leqslant \alpha$ 





Catalyst Candidate with 0 variation







Collect every  $x^i$  s.t. $\left|\frac{x^*}{x^i}\right| \leqslant \alpha$ 

$$\begin{pmatrix} 0 \\ -7 \\ 6 \\ 2 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ Protease \end{pmatrix}$$



Catalyst Candidate with 0 variation

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ Protease \end{pmatrix}$$

Set species to 0 and start over.





with 0 variation



Collect every  $x^i$   $s.t. |\frac{x^*}{x^i}| \leqslant \alpha$ 

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} Cyclin \\ Kinase \\ KinaseP \\ ProteaseP \\ Protease \end{pmatrix}$$

Set species to 0 and start over.

#### Results on Minimal Mitotic Oscillator (Goldbeter, 1991)



# Model Selection Step

ullet Choosing the right aggregated network amounts to choosing the optimal number of clusters k

 $\bullet$  The reaction inference algorithm outputs a set of reactions, defining a generative model  $\hat{\mathcal{M}}$ 

• Model quality can be assessed by comparing the distribution of  $\mathcal M$  to the one described by  $\hat{\mathcal M}$ 

## Model selection protocol



# 6 variables Cell Cycle Model (Tyson, 1991)



|                            | mean transition difference vector | max transition difference vector |
|----------------------------|-----------------------------------|----------------------------------|
| Cyclin                     | 3.3                               | 45                               |
| Cyclin $\sim$ {p1}         | 1.02                              | 2                                |
| Cdc2                       | 53.54                             | 853                              |
| $Cdc2{\sim}\{p1\}$         | 50.3                              | 840                              |
| Cdc2-Cyclin $\sim$ {p1}    | 6.43                              | 123                              |
| Cdc2-Cyclin $\sim$ {p1,p2} | 4.7                               | 122                              |

# 6 variables Cell Cycle Model (Tyson, 1991)



- Reaction recovered are precisely the four fastest ones hence those with the highest probability to occur when possible (False Positive: 0%, False Negative: 50%)
- The gap between kinetic parameters values results in a slow/fast dynamic, a limit of the stochastic approach.

# Subsampling effect on learning

Introduction



- Rules including catalysts are inferred without the latter : more false positives
- Scarce reactions such as  $\implies$  A are inferred : less false negatives
- As the subsampling step grows, more false positives appear.

 Unsupervised reaction inference algorithm dealing with subsampled and noisy time-series data

Reaction Network inference algorithm

- The algorithm finds original reactions
- But also misses other original reactions (false negatives)
  - $\rightarrow$  high precision but low recall

#### Perspectives:

 Case where not all species are observed (Elisabeth Degrand's Master Thesis - Evolving CRN)