

Multi-Fidelity Bayesian Optimization with Unreliable Information Sources

Contact: petrus.mikkola@aalto.fi

Problem

- Bayesian Optimization (BO) is a powerful framework for optimizing black-box, expensive-to-evaluate functions.
- Multi-Fidelity Bayesian Optimization (MFBO) integrates cheaper, lower-fidelity auxiliary information sources (ISs) to accelerate optimization over Single-Fidelity BO (SFBO).
- State-of-the-art MFBO algorithms can fail when auxiliary ISs are poor approximations of the primary IS \rightarrow Leads to higher regret than SFBO, defeating their purpose!

Relevant auxiliary information source

Unreliable auxiliary information source Black-box unreliable function Our method - rMF-MES Irrelevant Auxiliary Information Source Budget

Contributions

- We introduce rMFBO, a methodology to make any GP-based MFBO scheme robust to the addition of unreliable ISs.
- rMFBO provides theoretical guarantees that its performance can be tied to its SFBO analog with controllable probability.
- rMFBO outperforms concurrent MFBO methods when unreliable ISs are involved, while speeding up convergence w.r.t. SFBO when including relevant ISs.

Petrus Mikkola¹, Julien Martinelli¹, Louis Filstroff², Samuel Kaski^{1,3}

¹Aalto University ²ENSAI, CREST ³University of Manchester

3 Method

Alongside the MFBO algorithm, we introduce a concurrent pseudo-SFBO algorithm, which keeps track of data from the primary IS only, and so-called *pseudo-observations*. At each round t, we consider both single- and multi-fidelity proposals for an acquisition function α

$$\mathbf{x}_{t}^{\text{pSF}} = \underset{\mathbf{x}}{\operatorname{argmax}} \alpha(\mathbf{x}, m \mid \mathbf{x}_{t}^{\text{MF}}, \ell_{t}) = \underset{\mathbf{x}, \ell}{\operatorname{argmax}} \alpha(\mathbf{x}, \ell)$$

We follow the conservative query from pSFBO, $(\mathbf{x}_{t}^{\text{pSF}}, m)$, unless both conditions below are satisfied, in which case $(\mathbf{x}_t^{\text{MF}}, \ell_t)$ is queried. When pSFBO is not followed, we add a **pseudoobservation**, $\mu_{\rm MF}(\mathbf{x}_t^{\rm pSF}, m)$, to estimate what would have been the value of the SFBO query.

- Condition 1: The accuracy of the pseudo-observation should be high enough: $\sigma_{MF}(\mathbf{x}_t^{pSF}, m) \leq c_1$.
- Condition 2: The MFBO query proposal should be relevant enough: $s(\mathbf{x}_t^{\text{MF}}, \ell_t) \ge c_2$, where *s* is a **relevance measure**. In this work, we consider a cost-adjusted information gain [1].

rMFBO acts as an adaptive on/off switch between **MFBO and SFBO**

Theoretical results

Given that the objective function is drawn from a GP with a known smooth kernel, and let $c_1(\varepsilon, q) = \varepsilon/\sqrt{-2\log(1-q)}$: **Theorem** ("No harm"). Assume both algorithms, the robust MFBO and its SFBO variant, return their final proposal. Then,

$$R(\Lambda + \lambda_m, \mathbf{x}_{choice}^{rMF}) \leq R(\Lambda, \mathbf{x}_{choice}^{SF}) +$$

with probability greater than $q\left(1-da\exp(-\frac{1}{b^2})\right)$. \hat{M}_t measures the sensitivity of the next query when moving from pSFBO dataset to SFBO dataset.

- If we tolerate e.g. 0.1 units of regret undershoot with 90% probability, then we can consider $c_1(0.1, 0.9) \approx 0.05$.
- The values $c_1 = c_2 = 0.1$ performed well in the experiments.

- $\mu_{\mathrm{pSF}}, \sigma_{\mathrm{pSF}}$),
- $|\mu_{\rm MF}, \sigma_{\rm MF}|$.

 $-\varepsilon \max{\{T\hat{M}_T d^{T+1}, 2\}},$

References

[1] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi, and Masayuki Karasuyama. Multi-fidelity Bayesian optimization with max-value entropy search and its parallelization. ICML, 2020. [2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. NeurIPS, 2020.

