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1 Problem

* Bayesian Optimization (BO) is a powerful framework for
optimizing black-box, expensive-to-evaluate functions.

* Multi-Fidelity Bayesian Optimization (MFBO) integrates
cheaper, lower-fidelity auxiliary information sources (ISs)
to accelerate optimization over Single-Fidelity BO (SFBO).

e State-of-the-art MFBO algorithms can fail when auxiliary
ISs are poor approximations of the primary IS — Leads to
higher regret than SFBO, defeating their purpose!
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2 Contributions

* We introduce rMFBO, a methodology to make any GP-based
MFBO scheme robust to the addition of unreliable ISs.

* rTMFBO provides theoretical guarantees that its performance
can be tied to its SFBO analog with controllable probability.

* rTMFBO outperforms concurrent MFBO methods when unre-
liable 1Ss are involved, while speeding up convergence w.r.t.
SFBO when including relevant ISs.

3 Method

Alongside the MFBO algorithm, we introduce a concurrent
pseudo-SFBO algorithm, which keeps track of data from the
primary IS only, and so-called pseudo-observations. At each
round ¢, we consider both single- and multi-fidelity proposals
for an acquisition function «

pSF _
X, =argmaxa(X,m | U,sF,0pSF);

X

x",¢;) = argmax a(x, ¢ | Livr, OMF).
X,0

We follow the conservative query from pSFBO, (X?SF, m), unless
both conditions below are satisfied, in which case (xlth,ﬁt) 1S
queried. When pSFBO is not followed, we add a pseudo-
observation, ,LLMF(XIZSF, m), to estimate what would have been
the value of the SFBO query.

* Condition 1: The accuracy of the pseudo-observation should
be high enough: O'MF(XIL?SF, m) < cy.

* Condition 2: The MFBO query proposal should be relevant

enough: s(xl,}/IF,ét) > c9, Where s is a relevance measure. In
this work, we consider a cost-adjusted information gain [1].

rMFBO acts as an adaptive on/off switch between
MFBO and SFBO

4 Theoretical results

Given that the objective function is drawn from a GP with a
known smooth kernel, and let c1(g,q) = ¢/v/—2log(1 — q):

Theorem (“No harm"). Assume both algorithms, the robust
MFBO and its SFBO variant, return their final proposal. Then,

RA+ A, x0F ) < RINXY, . Y+emax{TMpd" 1,2},
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with probability greater than q (1 —da exp(—#)).

M, measures the sensitivity of the next query when moving
from pSFBO dataset to SFBO dataset.

o If we tolerate e.g. 0.1 units of regret undershoot with 90%
probability, then we can consider ¢1(0.1,0.9) = 0.05.

* The values ¢; = ¢9 = 0.1 performed well in the experiments.
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5 Experiments

* TMFBO is implemented in the BoTorch framework [2].
* We evaluate against several MOGP joint models.
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