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Abstract

Bayesian optimization (BO) is a powerful frame-
work for optimizing black-box, expensive-to-
evaluate functions. Over the past decade, many al-
gorithms have been proposed to integrate cheaper,
lower-fidelity approximations of the objective
function into the optimization process, with the
goal of converging towards the global optimum at
a reduced cost. This task is generally referred to
as multi-fidelity Bayesian optimization (MFBO).
However, MFBO algorithms can lead to higher
optimization costs than their vanilla BO counter-
parts, especially when the low-fidelity sources
are poor approximations of the objective func-
tion, therefore defeating their purpose. To address
this issue, we propose rMFBO (robust MFBO),
a methodology to make any GP-based MFBO
scheme robust to the addition of unreliable infor-
mation sources. rMFBO comes with a theoretical
guarantee that its performance can be bound to its
vanilla BO analog, with high controllable prob-
ability. We demonstrate the effectiveness of the
proposed methodology on a number of numerical
benchmarks, outperforming earlier MFBO meth-
ods on unreliable sources. We expect rMFBO
to be particularly useful to reliably include hu-
man experts with varying knowledge within BO
processes.

1 INTRODUCTION

Bayesian optimization (BO) has become a popular frame-
work for global optimization of black-box functions, es-
pecially when they are expensive to evaluate (Jones et al.,
1998; Brochu et al., 2010). Such functions have neither
known functional form nor derivatives, and conventional
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optimization techniques such as gradient descent cannot be
directly employed. BO rests upon two key elements. First,
it constructs a probabilistic surrogate model of the objec-
tive function with built-in uncertainty estimates, typically a
Gaussian process (GP), based on evaluations of the function.
The obtained surrogate is then used to select the next point to
evaluate by maximizing of a so-called acquisition function,
which quantifies the expected utility of evaluating a specific
point with the purpose of optimizing the black-box function.
Many off-the-shelf acquisition functions achieve this task
while balancing exploration and exploitation. Iterating these
two steps produces a sequence of designs whose aim is to
converge to the global optimum using a limited number of
function queries. BO has proven effective for a variety of
problems, including hyperparameter optimization (Snoek
et al., 2012), materials science (Zhang et al., 2020), and
drug discovery (Gómez-Bombarelli et al., 2018; Korovina
et al., 2020).

In many scenarios, lower-fidelity approximations of the
objective function are available at a cheaper query cost.
This occurs for instance when the evaluation of the objective
function involves a numerical scheme, where computational
cost and accuracy can be traded off. Another example is
the knowledge of domain experts. Indeed, practitioners
may have implicit knowledge of the objective function, for
instance, they may be able to point out good candidate
regions on the location of the global optimum (Hvarfner
et al., 2022). Such knowledge may naturally be considered
as a low-fidelity version of the true objective function.

The problem of integrating these auxiliary information
sources (ISs) to reduce the cost of BO has been tackled
in the literature under the name multi-fidelity Bayesian op-
timization (MFBO) (Huang et al., 2006; Kandasamy et al.,
2016; Zhang et al., 2017; Sen et al., 2018; Song et al., 2019;
Takeno et al., 2020; Li et al., 2020; Moss et al., 2021) when
the different sources can be ranked by their degree of fidelity;
when this is not possible, the problem has been studied as
multi-task BO (Swersky et al., 2013), non-hierarchical multi-
fidelity BO (Lam et al., 2015), or multi-information source
BO (Poloczek et al., 2017). However, as we will empiri-
cally demonstrate, state-of-the-art MFBO algorithms can
fail when the auxiliary ISs are poor approximations of the
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primary IS. More precisely, for a fixed budget, these algo-
rithms will lead to a higher regret w.r.t. their single-fidelity
counterparts (i.e., vanilla BO, which uses the primary IS
only), defeating their purpose. For instance, the guaran-
tees of Kandasamy et al. (2016) require that the deviation
between an auxiliary IS and the primary IS is bounded by
a constant known beforehand, which hardly ever holds in
practice, for example when working with a human expert,
or when experimenting with simulations to find the optimal
control parameters for a robotic system (Marco et al., 2017).

Surprisingly enough, this issue has not formally been ad-
dressed in the BO literature so far. We fix this gap by
introducing rMFBO, a methodology to make any GP-based
MFBO algorithm robust to the addition of unreliable in-
formation sources. More precisely, rMFBO comes with a
theoretical guarantee that its performance can be bound to
its vanilla BO analog, with high controllable probability.
To the best of our knowledge, rMFBO is the first MFBO
scheme providing such performance guarantees. We then
proceed to demonstrate the effectiveness of the proposed
methodology on various numerical settings using different
MFBO algorithms of the literature. Through its building
block nature, rMFBO paves the way towards a more sys-
tematic usage of auxiliary ISs independently of their degree
of fidelity, allowing human experts to join the optimization
process in a reliable manner.

2 PRELIMINARIES

Gaussian process regression

We begin by introducing the notation for single-output
Gaussian process regression, the probabilistic surrogate
upon which BO rests. Consider a dataset D =
{(x1, y1), . . . , (xn, yn)} with (xi, yi) ∈ Rd×R, for which
we want to learn a model of the form yi = f(xi) + ϵ, with
ϵ ∼ N (0, σ2

noise) for all i. We may place a (zero-mean) GP
prior on f :

f(x) ∼ GP(0, k(x,x′)). (1)

This defines a distribution over functions f whose mean is
E[f(x)] = 0 and covariance cov[f(x), f(x′)] = k(x,x′).
Here, k is a kernel function measuring the similarity be-
tween inputs. Consequently, for any finite-dimensional col-
lection of inputs (x1, . . . ,xn), the function values f =
(f(x1), . . . , f(xn))

T ∈ Rn follow a multivariate nor-
mal distribution f ∼ N (0,K), where K ∈ Rn×n =
(k(xi,xj))1≤i,j≤n is the kernel matrix.

Given D, the posterior predictive distribution p(f(x) | D)
is Gaussian for all x with mean µ(x) and variance σ2(x),
such that

µ(x) = kx(K + σ2
noiseI)

−1y,

σ2(x) = k(x,x)− kx(K + σ2
noiseI)

−1kx,

where y = [y1, . . . , yn] ∈ Rn and kx =
[k(x,x1), · · · , k(x,xn)]

T ∈ Rn.

Multi-output Gaussian process regression

GPs can be extended to multi-output Gaussian processes
(MOGP), modeling any collection of m-sized vector-valued
outputs (y1, ...,yn) based on inputs (x1, ...,xn) as a mul-
tivariate normal distribution. One way to achieve this ex-
tension is through the addition of a (d + 1)th dimension
to the input space, representing the output index 1 ≤ l ≤
m. This enables treating a MOGP as a single-output GP
acting on the augmented space Rd+1 through the kernel
k((x, ℓ), (x′, ℓ′)). The latter can, for instance, take the sep-
arable form k((x, ℓ), (x′, ℓ′)) = kinput(x,x

′) × kIS(ℓ, ℓ
′).

In particular, this setting allows for the use of the readily-
available analytical formulae for the posterior mean and
variance of single-output GPs.

Problem setup

We consider the problem of optimizing a black-box function
f (m) : X → R, where X is a subset of Rd, i.e. solving

argmax
x∈X

f (m)(x). (2)

In addition to f (m) (the primary IS), we may also query
m− 1 other auxiliary functions (auxiliary ISs), f (ℓ) : X →
R, where ℓ ∈ Jm − 1K denotes the IS index. The cost of
evaluating f (ℓ)(x) is λℓ for any x ∈ X . We assume that
λℓ < λm for any auxiliary IS ℓ ∈ Jm− 1K. The objective is
to solve (2) within the budget Λ > 0.

Bayesian optimization

At each round t, an input-IS pair (x, ℓ) ∈ X × JmK is
selected by maximizing the acquisition function α, which
depends on the GP surrogate model on f given all the data
acquired up until round t− 1:

xt, ℓt = argmax
(x,ℓ)∈X×JmK

α(x, ℓ). (3)

Querying for f (ℓ)(x) returns a noisy observation y(ℓ)x =
f (ℓ)(x) + ϵ, with i.i.d. noise ϵ ∼ N (0, σ2

noise). We refer to
the sequence of queries {xt}Tt=1 returned by a BO algorithm
as an acquisition trajectory.

Note that vanilla BO (i.e., BO with the primary IS only)
amounts to using the acquisition function x 7→ α(x,m),
which will be referred to as single-fidelity BO (SFBO) from
now on.

Recall that we wish to optimize f (m) within the budget Λ.
In this scenario, the performance metric of interest is the
regret of the algorithm, whose definition is recalled below.
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Definition 1 (BO regret). The regret of the BO algorithm
that spends Λcost and returns the final choice xchoice, is de-
fined by

R(Λcost,xchoice) :=

{
f∗ − f (m)(xchoice) if Λcost ≤ Λ,

∞ otherwise

where f∗ = maxx∈X f
(m) is the global maximum of the

primary IS.

Definition 2 (Number of queries). Let T := ⌊Λ/λm⌋ be
the available number of primary IS queries. Let T (ℓ) be the
random variable describing the number of ℓth-IS queries
spent by the MFBO algorithm.

There are two popular choices for xchoice. First, the Bayes-
optimal choice

xchoice = argmax
x∈X

µ(x,m),

where µ(x,m) is the posterior mean of the GP model given
all the data up to the final query Tlast =

∑m
ℓ=1 T

(ℓ). The
regret in this case is called the inference regret. Second, the
simple choice

xchoice = argmax
t∈JT (m)K

f (m)(xt),

where (x1, ...,xT (m)) is the primary IS acquisition trajec-
tory returned by the MFBO algorithm. The regret in that
case is called the simple regret.

Lastly, we provide an informal definition for an unreliable
IS. To the best of our knowledge, no formal definition has
been proposed in the literature so far, in view of the non-
trivial character of the task. Broadly speaking, an auxiliary
IS ℓ is said to be unreliable, if querying f (ℓ)(x) does not
lead to a decreasing inference regret when averaged over all
sequences of queries x ∈ X and all datasets D of any size.
As such, the relevance on an IS then also depends on the
MOGP model chosen.

3 RELATED WORK

As discussed in the introduction, many different multi-
fidelity extensions of Bayesian optimization have been pro-
posed in the literature; we refer the interested reader to
Takeno et al. (2020, Section 5) for a review. The closest to
our work are methods that do not assume a hierarchy be-
tween the sources (e.g., when the degree of fidelity cannot
be assessed in advance), as by Lam et al. (2015), where the
focus lies in designing a GP model that takes into account
the non-hierarchical nature of the sources. The multi-fidelity
kernel introduced by Poloczek et al. (2017) (see Supplemen-
tary F) is one example of such a design.

Surprisingly, the problem of the potential performance
degradation of MFBO algorithms has been largely ignored

in the literature, with the exception of Kandasamy et al.
(2016), who noticed that their multi-fidelity method per-
formed poorly compared to all single-fidelity variants in one
experiment (Kandasamy et al., 2016, Supplementary D.3).

Lastly, we mention that robustness has been studied for
vanilla BO in the context of (sometimes adversarially) noisy
inputs or outputs (Martinez-Cantin et al., 2018; Bogunovic
et al., 2018; Fröhlich et al., 2020; Kirschner and Krause,
2021). This notion of robustness is fundamentally different
from ours, indeed, we wish to provide guarantees that the
addition of an auxiliary IS (or several) will not lead to worse
performance w.r.t. vanilla BO.

4 PITFALLS OF MFBO METHODS

We now demonstrate, on a simple example, the influence
of the auxiliary IS quality on the performance of MFBO
algorithms. Let us consider the Hartmann6D function as the
objective (i.e., the primary IS). We examine two scenarios:
in the first one, the auxiliary IS is informative, consisting of
a biased version of the primary IS, with a degree of fidelity
l = 0.2. In the second scenario, the auxiliary IS is taken
to be the 6-dimensional Rosenbrock function, an irrelevant
source for this problem. Analytical forms for these examples
can be found in Supplementary G. We evaluate the multi-
fidelity maximum-entropy search (MF-MES) method from
Takeno et al. (2020) on these two scenarios, as well as
its single-fidelity counterpart (SF-MES), and our proposed
algorithm, rMFBO, built on top of these methods (rMF-
MES). In both cases, the cost of the primary IS is set to 1,
and cost of the auxiliary IS to 0.2. The simple regret of the
three algorithms is displayed in Figure 1.

When the auxiliary IS is informative (left panel), MF-MES
converges faster than SF-MES. This is the expected behavior
from MFBO algorithms: they use cheap IS queries in the
beginning to clear out unpromising regions of the space at a
low cost, which eventually speeds up convergence. However,
when the auxiliary IS is irrelevant (right panel), there is a
clear gap between MF-MES and SF-MES, even in the long
run. This demonstrates the inability of MF-MES to deal
with an irrelevant IS. In that scenario, we hypothesize that
the budget is wasted on uninformative queries, and thus too
many rounds are spent on learning that the sources are not
correlated (Figure 1, right bar plot), leading to a sub-optimal
data acquisition trajectory.

There is therefore a need for a robust method for such a
scenario. This is what the proposed rMF-MES, formally
introduced in the next section, achieves, by taking the best of
both worlds: sticking close to the single fidelity track in case
of an irrelevant IS, while using informative lower-fidelity
queries to accelerate convergence.
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Figure 1: Simple regret as a function of budget spent in two multi-fidelty problems, averaged over 100 repetitions. The
informative auxiliary IS helps reduce the cost of BO (left panel: MF-MES in purple reduces regret faster than SF-MES in
green), whereas the irrelevant IS catastrophically disrupts performance (right panel: MF-MES does not reach the low regret
of SF-MES at all). In both settings, the primary IS cost is set to 1 and the auxiliary IS cost to 0.2. From relevant to irrelevant
IS, the proportion of auxiliary IS queries remains high for MF-MES, while rMF-MES is more consistent (lower panel).

5 ROBUST MFBO ALGORITHM

In this section, we introduce rMFBO (robust MFBO), a
methodology to make any GP-based MFBO scheme robust
to the addition of unreliable ISs. The key idea is to con-
trol the quality of the acquisitions to prevent the MFBO
algorithm from behaving as described at the end of Section
4.

At round t, based on the acquisition function α, MFBO
proposes the query (xMF

t , ℓt) according to Eq. (3). The
question is to decide whether to execute this query, or to go
with a more conservative query from the primary IS. Indeed,
we wish to curb the potential performance deterioration w.r.t.
vanilla BO. To do so, we introduce a concurrent pseudo-
SFBO algorithm, which constructs a GP surrogate based
on data from the primary IS only, and so-called pseudo-
observations, introduced later on. The pseudo-SFBO uses
the acquisition function x 7→ α(x,m) and a separate single-
output GP, yielding the query (xpSF

t ,m).

Let us denote the predictive mean and standard deviation
of the MOGP model (used by the MFBO algorithm) by
µMF and σMF, and those of the GP model (used by the
pseudo-SFBO algorithm) by µSF and σSF. In a nutshell,
the proposed rMFBO follows the conservative query xpSF

t ,
unless the predictive variance of the MOGP model at xpSF

t

is small enough:

σMF(x
pSF
t ,m) ≤ c1, (4)

where c1 > 0 is a user-specified parameter. The pseudo-
SFBO learns from all the samples, even when the MFBO

candidate xMF
t is queried, by adding the pseudo-obervation

µMF(x
pSF
t ,m).

It can easily be seen that if c1 → 0, the described algorithm
becomes the SFBO algorithm, since the MFBO proposals
would be always ignored. Our main result, formally dis-
cussed in Section 6, is that we are able to derive a lower
bound on the regret difference between robust MFBO and
SFBO as a function of c1 > 0.

While condition (4) ensures that we can achieve similar
performance as SFBO when auxiliary IS is irrelevant, we
also want to reap the benefits of the multi-fidelity approach
when the auxiliary IS is relevant. To that end, we introduce
a measure of IS relevance, s, and add this second condition
for the acceptance of the MF query:

s(xMF
t , ℓt) ≥ c2, (5)

with c2 > 0 a user-specified parameter. We want to draw at-
tention to the fact that condition (4) operates over the SFBO
proposal while condition (5) acts on the MFBO proposal,
possibly based on an auxiliary IS. Condition (5) makes
rMFBO revert more often to primary IS, and makes pseudo-
observations more accurate overall. This allows the algo-
rithm to consider less conservative values for c1, opening
the door for the exploitation of auxiliary ISs. In this pa-
per, we use a cost-adjusted information gain (Takeno et al.,
2020),

s(x, ℓ) =
I(f (ℓ)(x), f∗ | DMF)

λℓ
, (6)

where I is the mutual information between the obser-
vation f (ℓ)(x) and the maximal value of f (m), f∗ :=
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Algorithm 1 Robust MFBO algorithm
1: Input: Budget Λ, costs (λ1, ..., λm), acquisition func-

tion α, hyperparameters c1 and c2, relevance measure s

2: Initialize DpSF,DMF

3: Perform Bayesian updates µSF, σSF, µMF, σMF
4: t← 1
5: while ⌊Λ/λm⌋ ≥ 2λm do
6: xpSF

t ← argmaxx α(x,m | µSF, σSF)
7: (xMF

t , ℓt)← argmaxx,ℓ α(x, ℓ | µMF, σMF)

8: if σMF(x
pSF
t ,m) ≤ c1 and s(xMF

t , ℓt) ≥ c2 then
9: yt ← f(xMF

t , ℓt)
10: DMF ← DMF ∪ {((xMF

t , ℓt), yt)}
11: Perform Bayesian updates µMF, σMF
12: yt ← µMF(x

pSF
t ,m) # pseudo-observation

13: DpSF ← DpSF ∪ {(xpSF
t , yt)}

14: Λ← Λ− λℓt
15: else
16: yt ← f(xpSF

t ,m)

17: DpSF ← DpSF ∪ {(xpSF
t , yt)}

18: DMF ← DMF ∪ {((xpSF
t ,m), yt)}

19: Λ← Λ− λm
20: end if
21: Perform Bayesian updates µSF, σSF, µMF, σMF
22: t← t+ 1
23: end while
24: S ← {x ∈ X | σMF(x,m) ≤ c1}
25: xpSF

t ← argmaxx∈S µMF(x,m)

26: yt ← f(xpSF
t ,m)

maxx∈X f
(m)(x); in other words the information gain on

f∗ brought by the observation f(x, ℓ).

The whole procedure is summarized in Algorithm 1, and
an extended version is discussed in Supplementary C. Note
that lines 24-26 guarantee that if the maximizer is one of
the unobserved pseudo-points, it is converted into an actual
observation, a requirement in the proof of Theorem 1.

6 THEORETICAL RESULTS

In this section we tie the regret of rMFBO to that of its
SFBO counterpart. The derivation holds for any relevance
measure s.

Let us first define the function f : X × JmK→ R such that
f(x, ℓ) = f (ℓ)(x) for all (x, ℓ) ∈ X × JmK. We assume
that X is a convex compact subset of Rd, and we make the
following assumptions about f :

Assumption 1 (f is drawn from a MOGP). Assume f is a
draw from a MOGP with zero-mean and covariance function
κ((x, ℓ), (x′, ℓ′)). In other words, {f(xi, ℓi)}i is multivari-
ate normal for any finite set of input-IS pairs {(xi, ℓi)}i.
Assumption 2. κ is known.

Assumption 3. κ is at least twice differentiable.

These assumptions are common in the Bayesian optimiza-
tion literature. For instance, see Srinivas et al. (2012) and
Kandasamy et al. (2016). We also follow these authors in
the next assumption.

Assumption 4 (Bounded derivatives with high probability).

P
(
sup
x∈X

∣∣∣∣ ∂f∂xj
∣∣∣∣ > L

)
≤ ae−(L/bj)

2

, ∀ j ∈ JdK

for some constants a, bj > 0.

Since a function with bounded partial derivatives (with an
uniform bound L) is Lipschitz continuous (with a Lipschitz
constant

√
dL), Assumption 4 implies by complementing

and the union bound that

|f (m)(x)− f (m)(x′)| ≤
√
dL ∥x− x′∥2 ∀ x,x′ ∈ X ,

with probability greater than 1 − dae−(L/b)2 , where b :=
maxj bj . Further, Assumption 4 is satisfied for four times
differentiable kernels (Ghosal and Roy, 2006, Theorem 5).

The next assumptions relate to the acquisition function.

Assumption 5. For any round t ∈ N, we assume that the
mapping (x,Dt) 7→ α(x,m,Dt) is C2.

Assumption 6. The Hessian∇2
xα(x,m) is a definite matrix

at the optimum x = x∗.

Running Algorithm 1 for T rounds returns the trajectory
{xpSF

t }Tt=1, which consists of primary IS queries and pseudo-
primary IS queries. Moreover, we denote the acquisition
trajectory returned by the single-fidelity counterpart as
{xSF

t }Tt=1. Our reasoning is as follows: we first control
the closeness of the two acquisition trajectories, then derive
a lower bound on the difference of their regret.

Let us consider the dataset as a t(d+ 1)-dimensional vector
Dt = (x

(1)
1 , ..., x

(d)
t , y1, ..., yt). Let Dt be the closed line

segment joining two datasets DA
t and DB

t . We introduce a
concept, the maximum rate of change of the next query with
respect to Dt, defined as the random variable Mt,

Mt = max
D∈Dt

∥∥∥∥∂xt+1

∂D (D)
∥∥∥∥

op
,

where ∥·∥op is the operator norm. Mt measures the sensitiv-
ity of the next query when moving from a dataset DA

t to a
dataset DB

t . It depends on the smoothness of the objective
function f , the kernel k, and the acquisition function α. The
detailed formulas Eqs. (13)-(14) and the computation details
for Mt can be found in Supplementary B and D. Consider
DA

t = DpSF
t and DB

t = DSF
t , and let us denote by M̂t the

largest product of any combination of M0, ...,Mt−1,

M̂t = max
S∈2Jt−1K

∏
k∈S

Mk. (7)
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Proposition 1. Assume Algorithm (1) has been run with
control parameter

c1(ε, q) =
ε√

−2 log(1− q)
, (8)

for ε > 0 and q ∈ (0, 1). Then, for all t ∈ JT − 1K,∥∥∥xSF
t − xpSF

t

∥∥∥
∞
≤ εtM̂td

t (9)

holds with probability greater than q
(
1− da exp(−1/b2)

)
.

Proof. The proof for the noiseless scenario (σnoise = 0) is
given in Supplementary B.1. For a noisy scenario (σnoise >
0), see the proof in Supplementary B.2. In the noisy sce-
nario, the statement holds with probability greater than
erf
(

1
2
√
σnoise

)
erf
(

1√
2σnoise

)
q
(
1− da exp(−1/b2)

)
, where

erf is the Gauss error function.

Corollary 1. The instant regret difference for all t ∈ JT−1K
is bounded; we have∣∣∣f (m)(xSF

t )− f (m)(xpSF
t )
∣∣∣ ≤ εtM̂td

t+1 (10)

with probability greater than q
(
1− da exp(−1/b2)

)
.

Proof. By Assumption 4 and the equivalence of the norms
∥·∥2 and ∥·∥∞ (with a constant

√
d), it holds with probabil-

ity greater than 1− da exp(− 1
b2 ) that∣∣∣f (m)(x)− f (m)(x′)
∣∣∣ ≤ d ∥x− x′∥∞ ,

for all x,x′ ∈ X . Corollary 1 follows from Proposition
1.

We can now present our main result, which states that with a
conservative control parameter c1(ε, q) (small ε and high q),
the worst case regret remains close to the regret of the SFBO
algorithm, with high probability. This means that including
an auxiliary IS in the robust MFBO algorithm will not cause
any “harm”, given conservative control parameters.

Theorem 1 (“No harm”). Assume that both algorithms, the
robust MFBO (Algorithm 1) and its SFBO variant, return
their simple final choices. Then,

R(Λ + λm,x
rMF
choice) ≤ R(Λ,xSF

choice) (11)

+ εmax
{
TM̂T d

T+1, 2
}
,

with probability greater than q
(
1− da exp(− 1

b2 )
)
.

Proof. The proof is given in Supplementary B.3.

Theorem 1 says that the magnitude of a possible regret loss,
compared to SFBO, is proportional to ε with a probability
proportional to q. For instance, if we tolerate 0.1 units of

regret undershoot with 90% probability, then by Theorem
1 this is guaranteed with the control parameter value c1 =
c1(0.1, 0.9) ≈ 0.05 for early BO rounds.

The regret difference bound in Theorem 1 corresponds to
the worst-case scenario where the multi-fidelity queries
(xMF

t , ℓt) are always accepted, and hence the bound is not
tight. The bound is practically useful only in the first rounds
due to the exponential dependence on T , however, in prac-
tice the bound is tighter than stated in Theorem 1, because
the acceptance probability is never one (due to c2 > 0).

7 EXPERIMENTAL RESULTS

We evaluate rMFBO on a benchmark of synthetic functions
widely used in multi-fidelity studies. Our proposed method
is used to make three state-of-the-art MFBO algorithms ro-
bust: Maximum Entropy Search (MF-MES) (Takeno et al.,
2020), General-purpose Information-Based Bayesian Opti-
misatioN (MF-GIBBON) (Moss et al., 2021) and Knowl-
edge Gradient (MF-KG) (Poloczek et al., 2017), the lat-
ter being benchmarked only on low-dimensional prob-
lems. All experiments are run within the BoTorch frame-
work (Balandat et al., 2020). The probabilistic surro-
gate model uses the downsampling kernel from Wu et al.
(2020): k((x, ℓ), (x′, ℓ′)) = kinput(x,x

′)×kIS(ℓ, ℓ
′), where

kinput(·, ·) is the RBF kernel, and kIS(ℓ, ℓ
′) := c + (1 −

ℓ)1+δ(1− ℓ′)1+δ. Here, l ∈ [0, 1] represents the degree of
fidelity of the IS, l = 1 corresponding to the target function,
often denotedm. The hyperparameters c and δ are estimated
by maximum marginal likelihood, similarly as those of kinput.
Results using alternative probabilistic surrogates can be
found in Supplementary F. Each test function is rescaled in
[0, 1]. Analytical forms can be found in Supplementary G,
together with 2D plots when applicable. For all experiments,
the initial dataset consists of 5d evaluations of the primary
IS and 4d evaluations of each auxiliary IS. For the remainder
of the section, except in the dedicated ablation study, we set
rMFBO hyperparameters to c1 = c2 = 0.1. The latter corre-
sponds to about 15% of the maximum information gain. For
more information on choosing c2, see Supplementary E. For
each experiment, we report the average and standard devia-
tion of the simple regret computed over 100 repetitions with
different initializations. Results displaying the inference
regret instead can be found in Figure 3 in the Supplemen-
tary. Source code reproducing the experiments is available
at https://github.com/AaltoPML/rMFBO.

7.1 Synthetic functions with one auxiliary IS

The goal is to maximize a target function using noisy evalua-
tions of the objective (primary IS), and an auxiliary IS. This
is exactly the setting of the introductory example of Section
4, where we discussed results obtained with an informative
IS case, and an irrelevant IS case. In this subsection, we
provide results with two additional objective functions and

https://github.com/AaltoPML/rMFBO
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types of auxiliary ISs.

Negated Exponential Currin 2D: We reproduce the ex-
periment performed by Kandasamy et al. (2016) and con-
sider the Exponential Currin function as the primary IS
while the auxiliary IS is the negated objective function it-
self, with λl = 0.1, λm = 1. The proposed rMFBO is
able to find the global optimum using a lower budget than
its MFBO counterpart (Figure 2, first row), even though
performances are quite similar for the Knowledge Gradient
acquisition function.

Sinus-perturbed Rosenbrock 2D: Next, we examine the
Rosenbrock 2D function as the target. In this experiment,
the auxiliary IS is equal to the objective corrupted with a
sinusoidal signal whose magnitude is the target function
mean. The costs are λl = 0.2, λm = 1. rMFBO consis-
tently improves over MFBO and leads to a simple regret on
par with SFBO (Figure 2, second row). It is worth noticing
that a similar experiment was performed by Poloczek et al.
(2017), however using a sinusoidal signal with a magnitude
200 times inferior to the mean of the objective function. Ap-
plying a more realistic perturbation still produces an infor-
mative IS, while illustrating a slightly increased robustness
brought by rMF-KG with respect to MF-KG.

7.2 XGBoost hyperparameter tuning

We now assess the performance of rMFBO on a real-world
hyperparameter tuning example. To that end, we follow
the experiment introduced by Li et al. (2020) and train
an XGBoost model (Chen and Guestrin, 2016) to predict
a quantitative measure of the diabetes progression1. The
dataset includes 442 examples, two-thirds are used for train-
ing and the remaining fraction for evaluation. We employ
the implementation from the scikit-learn library (Pedregosa
et al., 2011) and optimize 5 continuous hyperparameters de-
scribed in Section G. The primary IS trains XGBoost with
100 weak learners trees, while the auxiliary IS uses only
10, with λl = 0.1, λm = 1. The optimization starts with
10 random queries at each IS. We use the normalized root
mean square error to evaluate the performance. rMF-MES is
able to take advantage of the auxiliary IS and achieves faster
convergence than SF-MES, while staying close to MF-MES
(Figure 2, third row). Note that the auxiliary IS is in this case
of extremely good quality and comes at a 10-times cheaper
cost (see Figure 12 in the Supplementary), thus demon-
strating the ability of rMF-MES to use these cheap queries
even though the main purpose of the algorithm is to provide
robustness against unreliable sources. On the other hand,
rMF-GIBBON displays a behavior closer to SF-GIBBON.
While a significant advantage over MF-GIBBON can be
observed in the first half of the budget, rMF-GIBBON then
gets distanced by its MFBO counterpart.

1
https://archive.ics.uci.edu/ml/datasets/diabetes

7.3 Synthetic functions with several auxiliary ISs of
varying relevance

Next, we check whether rMFBO is able to distinguish be-
tween relevant and irrelevant auxiliary ISs in the presence of
multiple auxiliary ISs on two examples. In the first problem,
the 6D Hartmann function is selected as the primary IS, with
3 auxiliary ISs: Hartmann with degrees of fidelity 0.8, 0.1,
and the Rosenbrock function, respectively. In the second
problem, we wish to optimize the 2D Branin function with
3 auxiliary ISs: Branin with degree of fidelity 0.8, 0.1, and
the Ackley function. In both settings, the primary IS can
be queried for a cost of 1, and all auxiliary ISs for a cost
of 0.2. Regarding the Hartmann problem, rMFBO provides
a consistent decrease of regret compared to MFBO across
all methods. Our claim is backed up by the distribution of
queries (Figure 4, top row), which show how rMFBO avoids
querying uninformative sources while still taking advantage
of the informative one, whereas MFBO queries are scattered
across all ISs, delegating around 40% of them to ISs that are
either irrelevant or not worth the incurred cost. Performance
is slightly worse for the Branin problem, where rMFBO
significantly improves over MFBO for the GIBBON acqui-
sition function only. With a regret 100 times superior to that
of MES and GIBBON methods, the KG method seems to
converge very slowly for this example, even though only
the primary IS is queried (Figure 4, lower panel, right). The
close results between MF-MES and rMF-MES can be ex-
plained by the fact that MF-MES only spends 26% of its
queries on irrelevant ISs while dedicating 50% of its budget
on a cheap and relevant AIS.

7.4 Ablation study

Lastly, we investigate the performance of rMFBO w.r.t. sev-
eral changes such as auxiliary IS cost or hyperparameters
values. The benchmarks are only performed using the MES
and GIBBON strategies, due to the high computational over-
head of the KG method, more than ten times larger than
MES and GIBBON (Moss et al., 2021). We study the same
setting described at the end of Section 4. All discussed
figures are in the Supplementary material.

Variation of the auxiliary IS cost λl: Figure 5 shows
the evolution of the simple regret as the lower fidelity cost
increases (λl ∈ {0.1, 0.2, 0.5, 0.8}). For the informative
auxiliary IS case (first two columns), the increase in the cost
naturally shifts the behavior of MFBO and rMFBO towards
that of SFBO, losing the the acceleration of the convergence
in the process. This illustrates the trade-off between informa-
tiveness of an auxiliary IS and its query cost. Interestingly,
MFBO methods fail to respect that trade-off in an irrelevant
auxiliary IS setting. Indeed, MFBO regret eventually flats
out for both MES and GIBBON acquisition strategies at
high auxiliary IS query cost. For λl = 0.8, MF-MES spent
82% of the budget on auxiliary IS queries on average, MF-

https://archive.ics.uci.edu/ml/datasets/diabetes
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Figure 2: Simple regret depicted over budget spent in five multi-fidelity problems, averaged over 100 repetitions. The first
three problems have one auxiliary IS and the last two have three. Three BO acquisition functions (MES, GIBBON, KG) are
tested with their multi- and single-fidelity variants. The proposed robust multi-fidelity method is denoted by the letter ‘r’,
e.g. ‘rMF-MES’.

GIBBON 42%, over the 20 repetitions. Instead, rMFBO
is, as expected, only slightly positively affected by the cost
increase, since the irrelevant auxiliary IS becomes less and
less relevant, showing again robustness to uninformative IS.

Variation of rMFBO hyperparameters: We now inves-
tigate how the hyperparameters c1 and c2 affect the perfor-
mance of rMFBO. c1 constitutes a threshold on the primary
IS MF model posterior variance evaluated at SFBO proposal
(xpSF

t ,m), which leads to a primary IS query when exceeded.
c2 measures the information gain provided by the MFBO
proposal (xMF

t , l) for l ∈ JmK, and leads to a primary IS
query when not exceeded. We vary c1, c2 ∈ {0, 0.1, 0.2}
and display the results in Figure 6.

By construction, setting c1 to 0 (first two rows) essentially
reduces rMFBO to SFBO, no matter the value of c2. As
c1 increases and c2 = 0 (first column, third to sixth rows),
rMFBO quickly transitions to the MFBO dynamics regard-
less of the relevance of the IS. Then, increasing c2 provides
a reasonable trade-off between robustness to irrelevant aux-

iliary IS and exploitation of informative auxiliary IS.

A tentative adaptive strategy to automatically set c2 is pre-
sented in Supplementary Section E.2 and illustrated in Fig-
ure 7. Results are comparable with that of Figure 2, where
c2 = 0.1.

Varying the kernel confidence level: The downsampling
kernel used as joint model here involves a contribution
that depends on the value ℓ associated to each IS (Equa-
tion (19)). While the primary IS m always corresponds
to the value ℓ = 1, the value set for the auxiliary IS re-
mains to be selected, and determines whether that IS is
perceived as relevant in the optimization of the objective.
In Figure 8, for each row, the auxiliary IS value ℓ varies in
{0.1, 0.2, 0.5, 0.8}, so as to simulate increased confidence
in the auxiliary IS for the MOGP. As expected, gradually
increasing the level of confidence in the irrelevant IS case
leads to optimization failure for MF-MES and MF-GIBBON
(right panel), while rMF-MES and rMF-GIBBON maintain
steady performances. In the relevant auxiliary IS case (left
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panel), there seems to exist an optimal value of ℓ ≈ 0.1
matching the informativeness of the AIS, so that MFBO
methods perform on par with rMFBO. Beyond that value,
overconfidence leads to degraded performance for MFBO.

Varying the MOGP model: Previous experiments were
performed using the downsampling kernel as the joint model.
We next employ the linear truncated kernel available from
the BoTorch library, as well as the MISO kernel introduced
in (Poloczek et al., 2017). These kernels are described in
Section F and yield similar performance as the downsam-
pling kernel (Figures 9 and 10), thus demonstrating that
rMFBO is robust to the choice of a specific Gaussian pro-
cess surrogate model.

8 CONCLUSIONS

In this paper, we introduced rMFBO, a building block to any
MFBO method to make it robust to unreliable information
sources, i.e., which do not decrease the regret on average
when queried and therefore harmful to the optimization
process. In particular, we showed that the regret bound of
rMFBO can be tied to that of SFBO, with high probability.
Upon extensive experiments, we further demonstrated that
the current MFBO methods lack this notion of robustness,
and that rMFBO was able to successfully fill this gap, while
staying competitive when the auxiliary information sources
are relevant.

The proposed rMFBO method relies on two hyperparame-
ters, c1 and c2. While c1 is theoretically grounded, c2 was
set to a single fixed value which, even though not having
deeper theoretic grounding, produced satisfactory results
across the wide range of experiments. Its soundness was
further empirically assessed through an ablation study. Nev-
ertheless, c2 should adapt to the number of BO rounds, as
would be expected from an entropy-based measure. A tenta-
tive adaptive approach, which produced satisfactory results,
was considered in Supplementary E. Gaining theoretical un-
derstanding on how this value should be selected is left for
future research. From a computational perspective, rMFBO
keeps track of two acquisition trajectories, which leads to
increased computation times, but negligible compared to the
evaluation costs encountered in real-world settings. Lastly,
the regret bound of rMFBO is practically useful only in
the first rounds due to the exponential dependence on the
number of BO rounds. Future research should use non-zero
rejection probability of the multi-fidelity query proposals to
derive a tighter regret bound for later BO rounds.

Any safety-critical MFBO application can benefit from a
methodology such as rMFBO, as our algorithm gives guar-
antees against erroneous or even adversarial information
sources. Finally, rMFBO opens the door to a more sys-
tematic inclusion of human experts, with varying knowl-
edge, within BO processes. Typically, these experts would

have precise understanding on a specific region of the input
domain, but would provide irrelevant feedback elsewhere.
Our algorithm makes it possible to take into account these
novel information sources with varying degree of fidelity
across the input domain, opening exciting opportunities in
Bayesian optimization.
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A Additional experimental results
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Figure 3: Inference regret depicted over budget spent in five multi-fidelity problems, averaged over 100 repetitions. The first
three problems have one auxiliary IS and the last two have three. Three BO acquisition functions (MES, GIBBON, KG) are
tested with their multi- and single-fidelity variants. The proposed robust multi-fidelity method is denoted by the letter ‘r’,
e.g. ‘rMF-MES’.
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′), we used
ℓ = 1, ℓ′ = 0.2 for the primary IS and the auxiliary IS, respectively.
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Figure 6: Simple regret depicted over budget spent for the Hartmann6D multi-fidelity problem, averaged over 100
repetitions. At the row level, the hyperparameter c1 is varied, with even rows being the Hartmann/Hartmann0.2 (relevant IS)
problem, while odd rows consider the Hartmann/HartmannRosenbrock (irrelevant IS) problem. At the column level, the
hyperparameter c2 is varied. We used the downsampling kernel. In the computation of kIS(ℓ, ℓ

′), we used ℓ = 1, ℓ′ = 0.2
for the primary IS and the auxiliary IS, respectively.
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B Proofs

B.1 Noiseless scenario: Proposition 1

Proof of Proposition 1. In the proof, we simplify the notations and denote the pseudo SFBO query at round t by xt = xpSF
t ,

and Dt = DpSF
t for the pseudo SFBO dataset. The SFBO query at round t is denoted by xSF

t , as earlier. The acquisition
function is treated as a function of an input-IS pair (x, ℓ) and the datasetD. Let us think the dataset as a t(d+1)-dimensional
vector Dt = (x

(1)
1 , · · · , x(d)1 , · · · , x(1)t , · · · , x(d)t , y1, ..., yt). Let us use a shorthand notation α(x,m,D) = α(x,D), and

consider the next primary IS query

xt+1 = argmax
x∈X

α(x,Dt) (12)

which defines an implicit function xt+1(Dt) such that xt+1 solves ∇xα(x,Dt) = 0Rd . By applying the implicit function
theorem to the continuously differentiable function ∇xα : X × (X × R)t → Rd (Assumption 5) with invertible Jacobian
(Assumption 6), the rate of change of the next query with respect to the dataset can be defined as,

∥∥∥∥∂xt+1

∂Dt
(Dt)

∥∥∥∥
op

=

∥∥∥∥∥∥
[
(Hα,x(xt+1(Dt),Dt))

−1 ∂∇xα

∂D(k)
t

(xt+1(Dt),Dt)

]t(d+1)

k=1

∥∥∥∥∥∥
op

(13)

where ∥A∥op := inf{c > 0 : ∥Ax∥∞ ≤ c ∥x∥∞ ∀x ∈ X} is the operator norm, and Hα,x denotes the Hessian of

x 7→ α(x,Dt). Specifically, the (i, j)th-element of Hα,x reads as ∂2α
∂xi∂xj

. The ith-element of ∂∇xα

∂D(k)
t

is ∂2α

∂D(k)
t ∂xi

, which

denotes the partial derivative w.r.t. the first and the second variable of α(·, ·).
We now show the proposition by induction.

1◦ Base case t = 1: The claim follows by the design of Algorithm, since xSF
1 = x1.

2◦ Induction step: Let us assume that t ∈ {1, ..., T −2}. The outcome vector of the SFBO algorithm is ySF
t = (ySF

1 , ..., y
SF
t ).

The outcome vector of the pseudo-SFBO algorithm, yt = (y1, ..., yt), consists of observations yτ = f (m)(xτ ) and
pseudo-observations yτ = µMF(xτ ,m).

Consider the mapping xt+1 : (X × R)t → X with the domain and codomain equipped with the sup-norms. By the
above-mentioned implicit function theorem, there exists a neighbourhood such that xt+1 is continuously differentiable with
bounded derivatives. Since X is a compact subset of Rd, the spaces ((X × R)t, ∥·∥∞) and (X , ∥·∥∞) are Banach spaces.
Thus, by the mean value inequality on Banach spaces (Baggett, 1992, Theorem 12.6), if we consider the closed line segment
joining Dt to DSF

t (using the convexity of X ), and define Mt to be the maximum rate of change over the line segment,

Mt := max
D∈Dt

∥∥∥∥∂xt+1

∂D (D)
∥∥∥∥

op
, where Dt =

{
D | D = (1− s)Dt + sDSF

t , s ∈ [0, 1]
}

(14)

we can bound the closeness of the next queries at round t,∥∥xSF
t+1 − xt+1

∥∥
∞ =

∥∥xt+1(DSF
t )− xt+1(Dt)

∥∥
∞ ≤

∥∥DSF
t −Dt

∥∥
∞Mt.

It remains to bound
∥∥DSF

t −Dt

∥∥
∞. First, observe that,∥∥DSF

t −Dt

∥∥
∞ = max

{∥∥xSF
1 − x1

∥∥
∞ , ...,

∥∥xSF
t − xt

∥∥
∞ ,
∣∣ySF

1 − y1
∣∣ , ..., ∣∣ySF

t − yt
∣∣} .

Let us consider |ySF
τ − yτ | for any τ ∈ {1, ..., t}. It holds that,

|ySF
τ − yτ | =

{
|f(xSF

τ )− f(xτ )|, if Line 8 of Algorithm 1 false at query τ
|f(xSF

τ )− µτ (xτ )|, if Line 8 true at query τ

where we use the shorthand notations f(x) := f(x,m) and µτ,MF(x) := µMF(x,m | Dτ ).
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For the false case (real observation), we have

|ySF
τ − yτ | = |f(xSF

τ )− f(xτ )|
≤
√
d
∥∥xSF

τ − xτ

∥∥
2

(15)

≤ d
∥∥xSF

τ − xτ

∥∥
∞ (16)

≤ dετM̂τd
τ (17)

= ετM̂τd
τ+1

with probability greater than 1− da exp(− 1
b2 ) by Assumption 4 exploited in (15). The inequalities (16) and (17) follow

from the equivalence of the norms (∥x∥2 ≤
√
d ∥x∥∞) and the induction hypothesis, respectively. For the true case

(pseudo-observations), as before we have

|ySF
τ − yτ | ≤ |f(xSF

τ )− µτ,MF(xτ )|
≤ |f(xSF

τ )− f(xτ )|+ |f(xτ )− µτ,MF(xτ )|
≤ ετM̂τd

τ+1 + |f(xτ )− µτ,MF(xτ )|
with probability greater than 1 − da exp(− 1

b2 ). The first term represents the error for being off from the single-fidelity
algorithm acquisition track, and the second term is the prediction error of the MOGP surrogate model. Given that the
objective f is drawn from a MOGP with same covariance kernel than that of the MOGP surrogate in the Algorithm
(Assumption 1), the latter term can be bounded. For any constant C > 0, at round t,

P
(
f(x)− µt,MF(x)

σt,MF(x)
> C

)
≤ 1

2
exp

(
−C

2

2

)
P (|f(x)− µt,MF(x)| > Cσt,MF(x)) ≤ exp

(
−C

2

2

)
P (|f(x)− µt,MF(x)| ≤ Cσt,MF(x)) ≥ 1− exp

(
−C

2

2

)
.

Pick C = ε
σt,MF(x)

. Then, we know that |f(x)− µt,MF(x)| ≤ ε holds at least with probability 1− exp
(
− ε2

2σ2
t,MF(x)

)
.

If σt(x) ≤ ε√
−2 log(1−q)

, then |f(x) − µt,MF(x)| ≤ ε holds with probability greater than q. Therefore, |f(xτ ) −
µτ,MF(xτ )| ≤ ε, and

|ySF
τ − yτ | ≤ ετM̂τd

τ+1 + ε = ε(τM̂τd
τ+1 + 1).

By combining the results, we have∥∥DSF
t −Dt

∥∥
∞ = max

{∥∥xSF
1 − x1

∥∥
∞ , · · · ,

∥∥xSF
t − xt

∥∥
∞ ,
∣∣ySF

1 − y1
∣∣ , · · · , ∣∣ySF

t − yt
∣∣}

≤ max
{
εM0d, · · · , εtdtM̂t, ε(M0d+ 1), · · · , ε(tdt+1M̂t + 1)

}
= ε

(
tdt+1M̂t + 1

)
with probability greater than q

(
1− da exp(− 1

b2 )
)
. Note that the event |f(x)− µt,MF(x)| ≤ ε and the event in Assumption

4 are independent given the assumptions. For all t ∈ {1, ..., T − 2},

∥∥xSF
t+1 − xt+1

∥∥
∞ ≤ ε

(
tdt+1 max

S∈2Jt−1K

∏
k∈S

Mk + 1

)
Mt ≤ ε

(
tMtd

t+1 max
S∈2Jt−1K

∏
k∈S

Mk + dt+1 max
S∈2JtK

∏
k∈S

Mk

)

= εdt+1

(
t max
S∈2JtK

∏
k∈S

Mk + max
S∈2JtK

∏
k∈S

Mk

)
= ε(t+ 1)M̂t+1d

t+1

holds with probability greater than q
(
1− da exp(− 1

b2 )
)
.



Multi-Fidelity Bayesian Optimization with Unreliable Information Sources

B.2 Noisy scenario: Proposition 1

We consider a noisy scenario, that is, σnoise > 0. It can be shown that Proposition 1 holds if
√
σnoise

ε ≤ (dt+1M̂t− 1)/2 for all

t (with a negligible lower probability, specifically a factor of erf
(

1
2
√
σnoise

)
erf
(

1√
2σnoise

)
lower). Given empirical study on

values M̂t (Supplementary D), it is highly unlikely that this condition does not hold with reasonable values for ε and σnoise.

Proof. Proof B.1 should be modified as follows.

Let us consider |ySF
τ − yτ | for any τ ∈ {1, ..., t}. It holds that,

|ySF
τ − yτ | =

{
|f(xSF

τ ) + ϵ− f(xτ )− ϵ′|, if Line 8 of Algorithm 1 false at query τ
|f(xSF

τ ) + ϵ− µτ,MF(xτ ,m)|, if Line 8 false at query τ.

Note that |ϵ− ϵ′| follows a half-normal distribution with scale parameter
√
2σnoise, and |ϵ| follows a half-normal distribution

with scale parameter σnoise. This implies that P (|ϵ− ϵ′| ≤ √σnoise) = erf
(

1
2
√
σnoise

)
and P (|ϵ| ≤ √σnoise) = erf

(
1√

2σnoise

)
.

For the false case (real observation), we have

|ySF
τ − yτ | = |f(xSF

τ ) + ϵ− f(xτ )− ϵ′|
≤ |f(xSF

τ )− f(xτ )|+ |ϵ− ϵ′|

≤ 1√
d

∥∥xSF
τ − xτ

∥∥+√σnoise

≤ 1√
d

√
dετM̂τ +

√
σnoise

= ετM̂τ +
√
σnoise

with probability greater than erf
(

1
2
√
σnoise

) (
1− da exp(− 1

b2 )
)

by Assumption 4. The last two inequalities follow from the

induction hypothesis and the equivalence of the norms, ∥x∥ ≤
√
d ∥x∥∞.

For the true case (pseudo-observation), as before we have,

|ySF
τ − yτ | ≤ |f(xSF

τ )− µ(xτ )|+ |ϵ|
≤ |f(xSF

τ )− f(xτ )|+ |f(xτ )− µ(xτ )|+
√
σnoise

≤ ετM̂τ + |f(xτ )− µ(xτ )|+ 2
√
σnoise

≤ ετM̂τ + ε+ 2
√
σnoise

= ε(τM̂τ + 1 +
2
√
σnoise

ε
)

with probability greater than erf
(

1
2
√
σnoise

)
erf
(

1√
2σnoise

) (
1− da exp(− 1

b2 )
)
.

Hence, in this case we have∥∥DSF
t −Dt

∥∥
∞

= max
{∥∥xSF

1 − x1

∥∥
∞ , ...,

∥∥xSF
t − xt

∥∥
∞ ,
∣∣ySF

1 − y1
∣∣ , ..., ∣∣ySF

t − yt
∣∣}

≤ max

{
εM0d, · · · , εtdtM̂t, ε(M0d+ 1 +

2
√
σnoise

ε
), · · · , ε

(
tdt+1M̂t + 1 +

2
√
σnoise

ε

)}
= ε

(
tdt+1M̂t + 1 +

2
√
σnoise

ε

)
with probability greater than erf

(
1

2
√
σnoise

)
erf
(

1√
2σnoise

) (
1− da exp(− 1

b2 )
)
q.

For all t ∈ {1, ..., T − 2},
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∥∥xSF
t+1 − xt+1

∥∥
∞ ≤ ε

(
tdt+1 max

S∈2Jt−1K

∏
k∈S

Mk + 1 +
2
√
σnoise

ε

)
Mt

≤ ε
(
tMtd

t+1 max
S∈2Jt−1K

∏
k∈S

Mk + dt+1 max
S∈2JtK

∏
k∈S

Mk

)

= εdt+1

(
t max
S∈2JtK

∏
k∈S

Mk + max
S∈2JtK

∏
k∈S

Mk

)
= ε(t+ 1)M̂t+1d

t+1

holds with probability greater than erf
(

1
2
√
σnoise

)
erf
(

1√
2σnoise

) (
1− da exp(− 1

b2 )
)
q, when 1 +

2
√
σnoise

ε ≤ dt+1M̂t. Specifi-

cally, when
√
σnoise

ε ≤ (dt+1M̂t − 1)/2.

B.3 Theorem 1

Proof of Theorem 1. First, note that for any budget and any choice (simple or Bayes optimal) it holds,

R(Λ,xSF
choice)−R(Λ,xrMF

choice) = f(xrMF
choice)− f(xSF

choice).

For the simple choice, we have xSF
choice = argmaxt∈JT K f(x

SF
t ), and xrMF

choice = argmaxt∈JT (m)K f(xt) where x1, ...,xT (m)

is the primary IS acquisition sequence returned by Algorithm 1 (pseudo-queries removed from the output sequence). With a
slight abuse of notation we write T and T (m) for both the number of queries (Definition 2) and the corresponding index sets
(e.g. t ∈ T (m) means that yt is not a pseudo-observation).

For all t ∈ T , it holds that f(xrMF
choice) − f(xSF

choice) > −εTM̂T d
T+1 by Corollary 1 with probability greater than

q
(
1− da exp(− 1

b2 )
)
. The problem is that the values yt for t ∈ T \ T (m) are never observed, and we cannot take

minimum over these “NaN values” (i.e., argmax is not well-defined) in the computation of xrMF
choice. To solve this issue, a

quantity λm was saved from the budget Λ (Algorithm 1, Lines 24-26), thus ensuring that if the true maximizer is one of the
pseudo-observations, then it will be queried at primary IS, leading to an actual observation.

Specifically, for the last query at T + 1. Note that every pseudo-query is in S = {x ∈ X | σT,MF(x,m) ≤ c1}. For any
x ∈ S, it holds that P (|f(x)− µT,MF(x)| ≤ ε) ≥ q (see Proof B.1). Thus,

|max
x∈S

f(x)− f(argmax
x∈S

µT,MF(x))| ≤ 2ε,

with probability greater than q.

C Full version of the algorithm

Some modifications can be done to improve the empirical performance of Algorithm 1 while all the theoretical results of
Section 6 still hold.

Posterior mean update of the pseudo observations: Lines 12-13 of Algorithm 1 are for simplicity, the algorithm can
be made more efficient by adjusting these. All the pseudo-observations in DpSF can be updated to correspond to the most
recent predictive mean estimate of the joint surrogate model at the current round t. This does not break the condition
σMF(x

pSF
t ,m) ≤ c1, since the posterior variance cannot increase as new data is added. We go further and also check whether

the single-fidelity GP surrogate can provide a more accurate estimate of the pseudo-observation in the sense of the accuracy
of a nearest neighbor. For the pseudo-observation, we choose the most recent predictive mean estimate of the single-fidelity
surrogate model if |f(xNN

t ,m)− µSF(x
pSF
t )| ≤ |f(xNN

t ,m)− µMF(x
pSF
t ,m)| where xnn

t is the nearest neighbor of xpSF
t in

the primary IS training data.
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Round 1 2 3 4 5 6 7 8 9

Mean 0.823668 1.081626 1.005563 1.199914 1.483624 1.454633 1.854412 2.625723 3.606273
Std 0.398510 0.475530 0.358448 0.610190 0.559461 0.511228 0.903042 1.302165 1.784013

Table 1: The mean and standard deviation of M t, t ∈ J9K, over 20 repetitions.

Multiple auxiliary IS relevance check: When the number of auxiliary ISs is more than two, the algorithm can give a
chance also to other auxiliary IS, even if the first proposed query xMF

t at IS ℓt is considered irrelevant by the algorithm.
Looping over all IS, and checking their relevance, does not violate the conditions in Algorithm 1, so the theoretical results
are preserved.

Relevance check for primary IS: When (xMF
t , ℓt) with ℓt = m is proposed, we can either have or not have a relevance

check for that primary IS query. We consider a version that does not have a relevance check, which means that if ℓt = m,
the query is automatically accepted.

The pseudo code of the full algorithm is presented in Algorithm 2. Blue lines correspond to addition w.r.t. the first
improvement, red lines to the second, and purple lines to the third.

D Computing constants Mt

Recall that the formula for Mt presented in Equations (13) and (14). The optimization over Dt makes the computation of
Mt expensive. To avoid this, we consider a lower bound for Mt, defined as,

M t :=

∥∥∥∥∥∥
[
(Hα,x(xt+1(Dt),Dt))

−1 ∂∇xα

∂D(k)
t

(xt+1(Dt),Dt)

]t(d+1)

k=1

∥∥∥∥∥∥
op

, (18)

where ∥A∥op := inf{c > 0 : ∥Ax∥∞ ≤ c ∥x∥∞ ∀x ∈ X} is the operator norm, and Hα,x denotes the Hessian

of x 7→ α(x,Dt). Specifically, the (i, j)th-element of Hα,x reads as ∂2α
∂xi∂xj

. The ith-element of ∂∇xα

∂D(k)
t

is ∂2α

∂D(k)
t ∂xi

,

which denotes the partial derivative w.r.t. the first and the second variable of α(·, ·). Note that Hα,x(a,b) ∈ Rd×d and
∂∇xα

∂D(k)
t

(a,b) ∈ Rd for a ∈ Rd,b ∈ Rt(d+1).

The gradient of∇αx can be obtained by exploiting the automatic differentiation tools available in different programming
frameworks. We used the BoTorch-GPyTorch ecosystems (Balandat et al., 2020; Gardner et al., 2018). Matrices in
Equation (18) need not to compute separately, but instead by taking the Jacobian of (xt+1,Dt) 7→ ∇xα(xt+1,Dt), and
by considering its sub-matrices, all the terms can be obtained. However, the automatic differentiation comes at the cost
of possible numerical instability. Especially, a reliable estimate of the Hessian Hα,x turned out to be difficult to obtain,
resulting often a Hessian with complex eigen values and lacking symmetry. However, we run an experiment where the
Hessian was forced to be symmetric and a large jitter term was added to the diagonal. The results on Rosenbrock 2D with
rMF-GIBBON over 20 repetitions are depicted in Table 1.

M t grows as more data is obtained (as t grows), as expected. Namely, M t is same as (the maximum over j) the sum over
(|∂xj/∂Dt,1|, ..., |∂xj/∂Dt,t|), where xj denotes jth coordinate of xt+1 and Dt,i denotes ith data point of Dt. That is, as
the number of data points grows, the number of terms in the sum grows also.
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Algorithm 2 Full version of robust MFBO algorithm
Input: Budget Λ, costs (λ1, ..., λm), acquisition function α, hyper-
parameters c1 and c2, relevance measure s
Initialize DpSF,DMF

Perform Bayesian updates µSF, σSF, µMF, σMF
pobs ← {}
t← 1
while ⌊Λ/λm⌋ ≥ 2λm do
xpSF
t ← argmaxx α(x,m | µSF, σSF)

condition1← σMF(x
pSF
t ,m) ≤ c1

condition2← False
if condition1 then

(xMF
t , ℓt)← argmaxx,ℓ α(x, ℓ | µMF, σMF)

if ℓt = m then
condition2← True

else
ISleft← Jm− 1K
while |ISleft| > 0 and not condition2 do
(xMF

t , ℓt)← argmaxx∈X ,ℓ∈ISleft α(x, ℓ | µMF, σMF)

if s(xMF
t , ℓt) ≥ c2 then

condition2← True
else

ISleft← ISleft \ {ℓt}
end if

end while
end if

end if
if condition1 and condition2 then
pobs ← pobs ∪ {t}
yt ← f(xMF

t , ℓt)
DMF ← DMF ∪ {((xMF

t , ℓt), yt)}
Perform Bayesian updates µMF, σMF
yt ← µMF(x

pSF
t ,m) # pseudo-observation

DpSF ← DpSF ∪ {(xpSF
t , yt)}

Λ← Λ− λℓt
else
yt ← f(xpSF

t ,m)

DpSF ← DpSF ∪ {(xpSF
t , yt)}

DMF ← DMF ∪ {((xpSF
t ,m), yt)}

Λ← Λ− λm
end if
Perform Bayesian updates µSF, σSF, µMF, σMF
DpSF ← UPDATE-PSEUDO-OBS(DpSF,DMF, µMF, µpSF, pobs)
Perform Bayesian updates µSF, σSF
t← t+ 1

end while
S ← {x ∈ X | σMF(x,m) ≤ c1}
xpSF
t ← argmaxx∈S µMF(x,m)

yt ← f(xpSF
t ,m)

Algorithm 3 UPDATE-PSEUDO-OBS
Input: DpSF,DMF, µMF, µpSF, pobs
for t in pobs do

xnn
t ← NearestNeighbor(xpSF

t ,DMF[ℓ = m])
y ← f(xnn

t ,m)
if |µMF(x,m)− y| > |µSF(x)− y| then
DpSF[yt]← µSF(x

pSF
t )

else
DpSF[yt]← µMF(x

pSF
t ,m)

end if
end for
return DpSF
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E Hyperparameter c2

E.1 Non-adaptive strategy

In experiments, we use a constant value c2 = 0.1 over all BO rounds. To understand how c2 is connected to the maximum
information gain of the primary IS, we consider the maximum entropy search formula. Wang and Jegelka (2017) gives
formula for the information gain with single y∗ draw (Formula 6, K = 1),

I({x, y}; y∗ | Dt) ≈
γy∗(x)ψ(γy∗(x))

2Ψ(γy∗(x))
− log(Ψ(γy∗(x))),

where ψ is the probability density function and Ψ the cumulative density function of a normal distribution, and γy∗(x) =
y∗−µt(x)

σt(x)
. The information gain I is unbounded above but rarely in practice greater than − log(1/2), which is achieved

when γy∗(x) = 0. Then, roughly speaking, c2 = 0.1 implies that the AIS query should give at least about 15% of the
maximum information gain. We recommend setting c2 = −u log(1/2), where u is the percent of the maximum information
gain required for a cost-adjusted AIS query. We found that u = 15% was a good default value.

E.2 Adaptive strategy

As entropy decreases during BO rounds, the information gain also decreases. For this reason, we also consider a strategy for
setting c2, which adjusts to the amount of entropy at round t. Furthermore, this strategy automatically sets c2 without the
user having to specify it. We consider adaptively set c2(t) = a

∫
I(f(x,m), f∗ | DSF

t )dx, where a is a positive constant.
When a = 1/vol(X ), the threshold corresponds to the average information gain coming from the primary IS. However, this
is too soft threshold value, as there are often large areas of space where the information gain is negligible, which in turn
lowers the average information gain. For this reason, we found that a higher threshold works better empirically. Specifically,
we found that the value a = 100/vol(X ) works well.

The information gain I(f(x,m), f∗ | DSF
t ) is computed by using the GP model that is trained on PIS data only. Pseudo-

observations are not considered, so that they do not distort the information gain estimate. This requires one more GP model
to be trained in the robust MFBO algorithm. Figure 7 reproduces the results previously displayed in Figure 2 using now the
proposed adaptive criteria for c2.
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Figure 7: Simple regret depicted over budget spent in five multi-fidelity problems, averaged over 100 repetitions. The first
three problems have one auxiliary IS and the last two have three. Three BO algorithmic families (MES,GIBBON,KG)
are tested with their multi- and single-fidelity variants. The proposed robust multi-fidelity method is denoted by the letter
‘r’, e.g. ‘rMF-MES’. For rMF methods, the selection of c2 is done using the adaptive strategy proposed in Supplementary
Section E.2.
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F Multi-fidelity kernels

We here give some insights about the different joint models that can be used in MFBO, as well as some additional numerical
experiments using different kernels.

F.1 Kernels

The Downsampling kernel (Wu et al., 2020, Supplementary): Recall that the joint model employed in the experiments
from the main text uses the following kernel:

kDS((x, ℓ), (x
′, ℓ′)) = kinput(x,x

′)× kIS(ℓ, ℓ
′)

kinput(x,x
′) = exp

(
−1

2

d∑
i=1

(xi − x′i)2
si

)
kIS(ℓ, ℓ

′) = c+ (1− ℓ)1+δ(1− ℓ′)1+δ

The value ℓ ∈ [0, 1] needs to be specified, and represents the confidence we have in the IS, with the primary IS m being
associated to ℓ = 1. Figure 8 investigates the effect of ℓ. The hyperparameters c, δ and {si}1≤i≤d are obtained through
marginal likelihood maximization. When δ = 0,

kDS((x, ℓ), (x
′, ℓ′)) = (c+ (1− ℓ)(1− ℓ′))kinput(x,x

′) (19)

which can be written as

kDS((x, ℓ), (x
′, ℓ′)) =

{
ckinput(x,x

′) + (1− ℓ)(1− ℓ′)kinput(x,x
′) ℓ ̸= 1, ℓ′ ̸= 1

ckinput(x,x
′) otherwise

The Linear Truncated kernel: The Linear Truncated kernel implemented in BoTorch reads as

kLT((x, ℓ), (x
′, ℓ′)) = kinput(x,x

′) + c(ℓ, ℓ′)kIS(x,x
′) (20)

c(ℓ, ℓ′) = (1− ℓ)(1− ℓ′)(1 + ℓℓ′)p (21)

where kinput and kIS are Matern kernels both with ν = 2.5, but each with their own lengthscale. For p = 0, this leads to

kLT((x, ℓ), (x
′, ℓ′)) =

{
kinput(x,x

′) + (1− ℓ)(1− ℓ′)kIS(x,x
′) ℓ ̸= 1, ℓ′ ̸= 1

kinput(x,x
′) otherwise

This highlights a close correspondence with the Downsampling kernel when the hyperparameters of kIS are close to that of
kinput. Figure 9 reproduces the results previously displayed in Figure 2 using now the linear truncated kernel as multiple
output gaussian process kernel

The MISO kernel (Poloczek et al., 2017, p.3): Following our notations, the Multi-Information Source Optimization
(MISO) kernel reads as

kMISO((x, ℓ), (x
′, ℓ′)) = kinput(x,x

′) + I(ℓ = ℓ′)kℓ(x,x
′)

where kinput and kℓ are similar kernels, e.g. both Matern or RBF, but each with their own lengthscale. We assume that there
is a typo in the text, and the correct formula should be,

kMISO((x, ℓ), (x
′, ℓ′)) = kinput(x,x

′) + I(ℓ = ℓ′ ̸= 1)kℓ(x,x
′). (22)

Here, ℓ and ℓ′ take categorical values, corresponding to ISs indexes, with m being the primary IS index, equivalent to ℓ = 1
for the Downsampling and Linear Truncated kernels. This can also be written as

kMISO((x, ℓ), (x
′, ℓ′)) =

{
kinput(x,x

′) + kℓ(x,x
′) ℓ = ℓ′ ̸= 1

kinput(x,x
′) otherwise

Figure 10 reproduces the results previously displayed in Figure 2 using now the MISO kernel as multiple output gaussian
process kernel

https://github.com/pytorch/botorch
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Figure 8: Simple regret depicted over budget spent for the Hartmann6D multi-fidelity problem, averaged over 100 repetitions.
For the informative auxiliary IS, the Hartmann function with bias l = 0.2 is considered (see Section G). The irrelevant
auxiliary IS is the 6D Rosenbrock function. For each row, the confidence level ℓ that the MOGP places in the auxiliary IS is
varied. The MOGP considered uses the downsampling kernel.
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Figure 9: Simple regret depicted over budget spent in five multi-fidelity problems, averaged over 100 repetitions. The first
three problems have one auxiliary IS and the last two have three. Three BO algorithmic families (MES,GIBBON,KG) are
tested with their multi- and single-fidelity variants. The proposed robust multi-fidelity method is denoted by the letter ‘r’,
e.g. ‘rMF-MES’. For MF methods, the joint model kernel used is the linear truncated kernel described in Paragraph F.1.
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Figure 10: Simple regret depicted over budget spent in five multi-fidelity problems, averaged over 100 repetitions. The first
three problems have one auxiliary IS and the last two have three. Three BO algorithmic families (MES,GIBBON,KG) are
tested with their multi- and single-fidelity variants. The proposed robust multi-fidelity method is denoted by the letter ‘r’,
e.g. ‘rMF-MES’. For MF methods, the joint model kernel used is the MISO kernel described in Paragraph F.1.
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G Experiment details

Hartmann-6D function:

f(x, l) = −
4∑

i=1

αi exp

− 6∑
j=1

Aij(xj − Pij)


α = (1.0− 0.1(1− l), 1.2, 3.0, 3.2)T

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


defined over [0, 1]6, and l ∈ [0, 1] is the degree of fidelity. The primary IS is then reached for l = 1.

Rosenbrock-dD function:

f(x) =

d−1∑
i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
defined over [−5, 5]d. The sinus-perturbed version used in the 2D case is defined as:

g(x) = f(x) + E[f(X)]× 0.8 sin (x1 + x2)

The expectation is approximated by the empirical mean taken over a grid of 1000 × 1000 points linearly spaced across
[−5, 5]2.

Exponential Currin 2D function:

f(x) =

(
1− exp

(
− 1

2x2

))
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20

defined over [0, 1]2.

Branin 2D function:

f(x, l) =

(
x2 −

(
5.1

4π2
− 0.1(1− l)

)
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

defined over [−5, 10]× [0, 15], and l ∈ [0, 1] is the degree of fidelity.

Ackley 2D function:

f(x) = −20 exp
(
−0.2

√
1

2
(x1 + x2)2

)
− exp

(
1

2
(cos(2πx1) + cos(2πx2)

)
+ 20 + e1

defined over [−5, 10]× [0, 15].

XGBoost hyperparameter tuning: The following hyperparameters are optimized: Huber loss parameter α ∈ [0.01, 0.1],
complexity parameter used for minimal cost-complexity pruning ([0.01, 100]), fraction of samples used to fit individual
base learners ([0.1, 1]), fraction of features considered when looking for the best tree split ([0.01, 1]) and learning rate
([0.001, 1]). For the simple regret computation, f∗ has been obtained using 30000 evaluations of the primary IS at random
points.
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Figure 11: Top: Currin Negated 2D plot of the primary IS (left) and the auxiliary IS (right). Middle: Sinus-perturbed
Rosenbrock 2D plot of the primary IS (left) and the auxiliary IS (right). Bottom: 2D Plot of the Multiple IS Branin problem.
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Figure 12: Distribution of rescaled objective values and best samples for the XGBoost 5D hyperparameter tuning problem.
For each IS, distributions are computed using 3000 random uniform samples within hyperparameter bounds and a kernel
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Bottom: density plot of the hyperparameters samples associated with 5% best values, demonstrating the strong agreement
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