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Explainable AI by Learning Mechanistic Models

▶ The Machine Learning field provides tools to analyze time series data and
yield predictions.
▷ Classical algorithms are Recurrent Neural Networks
▷ While predictions can be accurate, they do not come with an explanation
▷ Black box model

▶ Mechanistic Model Learning aims at achieving the same predictive
power with an explainable learned model

Focus: Chemical Reaction Networks (CRN) Inference

▶ Input : time series data on molecular concentrations
▷ single trace (wild type)
▷ multiple traces with perturbed conditions (gene knock outs)

▶ Output :
▷ CRN structure: reactions with -1/0/1 stoichiometry
▷ CRN kinetics: mass action law, Michaelis-Menten or Hill functions

The learned CRN provides a mechanistic explanation of the observations
and allows predictions
Learning parameters: well-understood
Learning structure: hard without prior knowledge (see DREAM challenge)

Chain CRN Example
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Learning from a single simulation trace

Hidden CRN Learned CRN
A 1

=⇒ B A 1.07
=⇒ B

B 1
=⇒ C B 1.09

=⇒ C
C 1

=⇒ D C 1.04
=⇒ D

D 1
=⇒ E D 0.99

=⇒ E

Application to Time Lapse Videomicroscopy Data

▶ NIH3T3 embryonic mouse fibroblasts
▶ Time lapse of 15 min during 72 hours
▶ Cell tracking (through cell divisions)
▶ 3 fluorescent markers of

▷ cell cycle (G1 and S-G2-M)
▷ circadian clock (Reverb-α)

Feillet Delaunay INSERM 2013

=⇒ CRN learned in 5 minutes CPU time
...

▶ ...

Statistical Learning Algorithm

▶ Greedy algorithm that iteratively infers reactions
▶ Reaction structures that maximise the pairing between reactant

consumption and product formation in the observed transitions F
▶ Choice of reaction rates that minimize standard deviation on F

Input set
of traces𝒟

Flattening into
Transition set𝒯

ℛ = ∅

𝒯 ←Filtering(𝒯 , 𝛽)

𝒞 ←Reaction
Inference(𝒯 , 𝛿)

𝒞 ← Kinetic
Inference
(𝒞 ,𝒯 , 𝛼)

𝑟∗←Selection
(𝒞 , 𝛼)

ℛ ←ℛ ∪ {𝑟∗}
𝒯 ←Update(𝒯 , 𝑟∗)

Output
CRN ℛ

no

yes

1Proposition

Time complexity in O(t.n2) where
▶ t is the number of observed transitions in the traces
▶ and n the number of observed molecular species

F-score on Simulation Traces from a Hidden Model

F = 2 ·
precision · recall
precision + recall

where precision =
tp

tp+fp
recall =

tp
tp+fn

=⇒ Sensitivity of the F-score w.r.t. algorithmic parameters

Chain CRN example red: single trace (wild type)
blue: multiple traces (from perturbed initial states with random zeroes)
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Results on the Yeast Cell Cycle Model [Tyson 1991]

Single simulation trace
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Hidden CRN Learned CRN
∅ 0.015

=⇒ cy ∅ 0.66
=⇒ cy1 + cdcy2

cy + cd1 200
=⇒ cdcy2 ∅ 0.01

=⇒ cdcy2
cdcy2 0.018

=⇒ cdcy1 cdcy2 0.1152
=⇒ cdcy1

cdcy2 + 2 ∗ cdcy1 cdcy2 0.05
=⇒ cy1

180
=⇒ 3 ∗ cdcy1

cdcy1 1
=⇒ cy1 + cd cdcy1 1.62

=⇒ ∅
cy1 0.6

=⇒ ∅ cy1 0.4
=⇒ cdcy1

cd1 100
=⇒ cd cd1 11259

=⇒ cd
cd 10000

=⇒ cd1 cd 5912
=⇒ cd1

Slow/fast multiple time scales make fast reactions unobservable.
The slow dynamics is inferred.

▶ ...
http://lifeware.inria.fr/ firstname.lastname@inria.fr


