Task-agnostic Amortized Multi-Objective Optimization

Xinyu Zhang, Conor Hassan, Julien Martinelli, Daolang Huang, Samuel Kaski

ICLR 2026 submission ¯_('ソ)_/¯

October 30th, 2025

— Daolang Huang

Black-box optimization Let $\mathscr X$ be a design space and f an objective function, we seek

$$x = \operatorname*{argmax}_{x \in \mathcal{X}} f(x)$$

i

Black-box optimization

Let $\mathscr X$ be a design space and f an objective function, we seek

$$x = \operatorname*{argmax}_{x \in \mathscr{X}} f(x)$$

- No information about *f*: gradients, convexity, invariances...
- Can only evaluate $y_i = f(\mathbf{x}_i) + \varepsilon$
- Collecting observations $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^t$

Black-box optimization

Let ${\mathscr Z}$ be a design space and f an objective function, we seek

$$x = \operatorname*{argmax}_{x \in \mathscr{X}} f(x)$$

- No information about *f*: gradients, convexity, invariances...
- Can only evaluate $y_i = f(x_i) + \varepsilon$
- Collecting observations $\mathcal{D}_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^t$

Bayesian Optimization tackles this problem by learning a $\it cheap-to-evaluate$ statistical surrogate of $\it f$

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu_{\theta_1}(\mathbf{x}), k_{\theta_2}(\mathbf{x}, \mathbf{x}'))$$

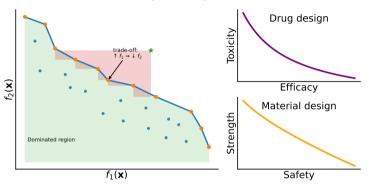
Yields next sample to query x_t selected sequentially based on an **acquisition function**

$$x_{t+1} = \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} \alpha_{\theta_3}(\mathbf{x}|\mathcal{D}_t)$$

Evaluate $f(\mathbf{x}_{t+1})$; append $\mathcal{D}_{t+1} \leftarrow \mathcal{D}_t \cup \{(\mathbf{x}_{t+1}, y_{t+1})\}$; update surrogate $p(f|\mathcal{D}_{t+1})$, repeat until satisfied.

Multi-objective optimization

We now observe a *vector* of objectives $f(x) = [f_1(x), ..., f_M(x)] \in \mathbb{R}^M$



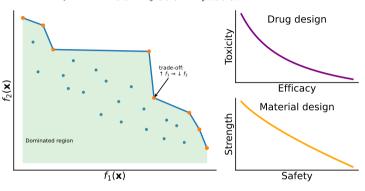
 $\mathscr{P} \subset \mathbb{R}^m$ set of objective vectors and reference $\mathbf{r} \in \mathbb{R}^m$ with $\mathbf{r} \leq \mathbf{p}$ for all $\mathbf{p} \in \mathscr{P}$ (e.g., $r_i \leq \min_{\mathbf{p} \in \mathscr{P}} p_i$).

$$HV(\mathcal{P};\mathbf{r}) = \lambda_m \left(\bigcup_{\mathbf{p} \in \mathcal{P}} \prod_{i=1}^m [r_i, p_i] \right)$$

 $HVI(x \mid \mathcal{P}, r) = HV(\mathcal{P} \cup \{x\}; r) - HV(\mathcal{P}; r)$

Multi-objective optimization

We now observe a *vector* of objectives $f(x) = [f_1(x), ..., f_M(x)] \in \mathbb{R}^M$



 $\mathscr{P} \subset \mathbb{R}^m$ set of objective vectors and reference $\mathbf{r} \in \mathbb{R}^m$ with $\mathbf{r} \leq \mathbf{p}$ for all $\mathbf{p} \in \mathscr{P}$ (e.g., $r_i \leq \min_{\mathbf{p} \in \mathscr{P}} p_i$).

$$HV(\mathcal{P}; \mathbf{r}) = \lambda_m \left(\bigcup_{\mathbf{p} \in \mathcal{P}} \prod_{i=1}^m [r_i, p_i] \right)$$

$$HVI(\mathbf{x} \mid \mathcal{P}, \mathbf{r}) = HV(\mathcal{P} \cup \{\mathbf{x}\}; \mathbf{r}) - HV(\mathcal{P}; \mathbf{r})$$

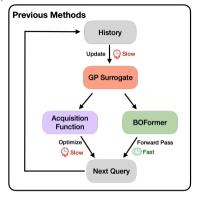
Caveats

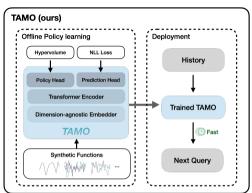
- Performances highly dependent on surrogate and acquisition function pair
 - Requires careful, expert selection of the ideal combination
 - Will not transfer to the next problem
 - → "Learn" the language of optimization
- Slow in high-throughput settings due to vanilla GP cubic complexity
 - ightarrow Do a huge offline pre-training step, reduce inference to a feedforward pass
- Most of the time myopic, focused on 1-step optimality
 - → Train over long optimization horizons using RL
- Learning from previous campaigns not straightforward
 - ▶ What if I previously optimized $f_1(x)$ alone, does that help in optimizing $[f_1(x), f_2(x)]$?
 - ▶ What if I previously optimized $f(x_1, ..., x_d)$, does that help in optimizing $f(x_1, ..., x_d, x_{d+1})$?
 - ightarrow Use dimension-agnostic task embeddings

Caveats

- Performances highly dependent on surrogate and acquisition function pair
 - Requires careful, expert selection of the ideal combination
 - Will not transfer to the next problem
 - → "Learn" the language of optimization
- Slow in high-throughput settings due to vanilla GP cubic complexity
 - ightarrow Do a huge offline pre-training step, reduce inference to a feedforward pass
- Most of the time myopic, focused on 1-step optimality
 - → Train over long optimization horizons using RL
- Learning from previous campaigns not straightforward
 - ▶ What if I previously optimized $f_1(x)$ alone, does that help in optimizing $[f_1(x), f_2(x)]$?
 - ▶ What if I previously optimized $f(x_1, ..., x_d)$, does that help in optimizing $f(x_1, ..., x_d, x_{d+1})$?
 - ightarrow Use dimension-agnostic task embeddings

Overview





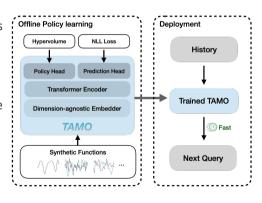
	Multi- objective	End-to-end amortized	Input agnostic	Output agnostic
Vanilla MOBO (Daulton et al., 2020)	✓	Х	N/A	N/A
BOFormer (Hung et al., 2025)	✓	×	N/A	×
NAP (Maraval et al., 2023)	X	✓	×	X
DANP (Lee et al., 2025)	X	×	✓	X
TAMO (this work)	✓	✓	✓	✓

TAMO: architecture at a glance

Shared backbone. Each forward pass uses either a prediction batch (context, targets) or an optimization batch (history, queries), traversing the same core components.

Optimization ← Predicting the optimum.

- Dimension-agnostic embedder: scalar→vector maps producing tokens independent of input/output dim.
- Transformer encoder: aggregates variable-size histories/contexts into a compact summary.
- **Task conditioning:** a few learned tokens injected late to specialize the computation.
- Two heads: a prediction head (density) and a policy head (acquisition over query set).

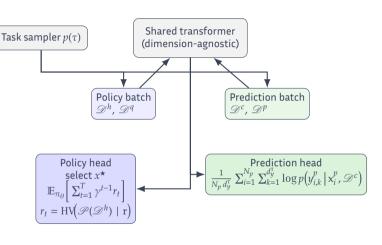


Pretraining

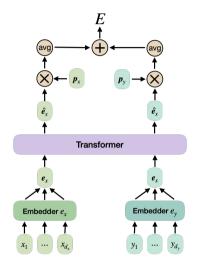
Task distribution. Synthetic M00 tasks $au \sim p(au)$ with $\mathbf{f}_{ au}: \mathscr{U} \subset \mathbb{R}^{d_x^{ au}} \to \mathbb{R}^{d_y^{ au}}$. Heterogeneous $d_x^{ au}, d_y^{ au} \Rightarrow$ dimension-agnostic policy.

Per step: two distinct mini-batches

- $\begin{array}{l} \bullet \ \ \textit{Policy-learning:} \\ \text{history} \ \mathscr{D}^h = \{(\mathbf{x}^h, \mathbf{y}^h)\}_{h=1}^{N_h} \\ \text{query set} \ \mathscr{D}^q = \{\mathbf{x}^q\}_{q=1}^{N_q} \\ \text{policy picks the best} \ \mathbf{x}^q \ \text{given} \ \mathscr{D}^h. \end{array}$
- Prediction: fresh function draw; sample N pairs and split into context $\mathcal{D}^c = \{(\mathbf{x}^c, \mathbf{y}^c)\}_{c=1}^{N_c}$ and targets $\mathcal{D}^p = \{\mathbf{x}^p\}_{p=1}^{N_p}$ for in-context regression.



Dimension-agnostic embedder



- Learnable maps (NNs) $e_x, e_y : \mathbb{R} \to \mathbb{R}^{d_e}$ applied element-wise: $e_x = e_x(x) \in \mathbb{R}^{d_x^\tau \times d_e}, \quad e_y = e_y(y) \in \mathbb{R}^{d_y^\tau \times d_e}.$
- After L transformer layers over $[e_x; e_y]$ we get contextualized tokens $\hat{e_x}, \hat{e_y}$. Draw per-dimension tokens $p_x^{(j)}, p_y^{(k)} \in \mathbb{R}^{d_e}$ sampled per batch from fixed pools of learned embeddings, then:

$$\tilde{\mathbf{e}}_{x,j} = \hat{\mathbf{e}}_{x,j} \odot \mathbf{p}_x^{(j)}, \quad \tilde{\mathbf{e}}_{y,k} = \hat{\mathbf{e}}_{y,k} \odot \mathbf{p}_y^{(k)}$$

$$\bar{\mathbf{e}}_x = \frac{1}{d_x^\tau} \sum_{j=1}^{d_x^\tau} \tilde{\mathbf{e}}_{x,j}, \quad \bar{\mathbf{e}}_y = \frac{1}{d_y^\tau} \sum_{k=1}^{d_y^\tau} \tilde{\mathbf{e}}_{y,k}, \quad \mathbf{E} = \bar{\mathbf{e}}_x + \bar{\mathbf{e}}_y.$$

 \rightarrow breaks permutation symmetry; features/objectives remain identifiable.

Transformer encoder-decoder

Transformer layers split into $B = B_1 + B_2$

- B_1 : history/context tokens self-attend $\Rightarrow \hat{\mathbb{E}}^h$ or $\hat{\mathbb{E}}^c$; queries/targets cross-attend to them $\Rightarrow \hat{\mathbb{E}}^q$ or $\hat{\mathbb{E}}^p$. This is the *only* path for queries/targets to use past data.
- B_2 : drop history/context; keep query/target tokens + task-specific tokens. An attention mask enforces that query/target tokens only attend to task-specific tokens.

Task-specific tokens

- ullet Prediction: a prediction-task token and an output-index token $p_y^{(k)}$.
- Optimization: an optimization-task token, a time-budget token $g_{\text{time}} = \text{MLP}_{\theta}((T-t)/T)$, and an input-dimension token $\sum_{i=1}^{d_x^T} p_x^{(i)}$.

Heads

Prediction head (per scalar target):

Policy head (over queries):

$$\begin{aligned} \{\phi_{i\ell}, \mu_{i\ell}, \sigma_{i\ell}\}_{i=1}^K &= \mathrm{MLP}_{\theta}(\hat{\mathbb{E}}_i^p) \\ p(y_{i,k}^p \mid x_i^p, \mathcal{D}^c) &= \sum_{\ell=1}^K \phi_{i\ell} \, \mathcal{N}(y_{i,k}^p; \, \mu_{i\ell}, \sigma_{i\ell}^2) \end{aligned} \qquad \qquad \pi_{\theta}(x_i^q) &= \frac{e^{\alpha_i}}{\sum_r e^{\alpha_r}} \end{aligned}$$

Inference

Algorithm S2 TAMO Test-Time Algorithm

Require: Pre-trained TAMO model, new task τ_{test} , query budget T, initial history set $\mathcal{D}_0^h := \{x^h, y^h\}$ (with random samples if empty),

```
1: \mathcal{D}^h \leftarrow \mathcal{D}^h_0
                                                                                                                          ▶ Initialize the history set
2: \mathcal{P} \leftarrow \{y^h\}
                                                                                                                            ▶ Initialize the Pareto set
```

3: **for**
$$t = 1, ..., T$$
 do

 $\mathbf{x}_t \sim \pi_{\theta}(\cdot \mid \mathcal{D}^h, t, T)$ > Sample the next query location

5:
$$y_t \leftarrow \text{Evaluate}(\mathbf{x}_t, \tau_{\text{test}})$$

6: $\mathcal{D}^h \leftarrow \mathcal{D}^h \cup \{(\mathbf{x}_t, y_t)\}$

□ Update the history set

 $\mathcal{P} \leftarrow \mathcal{P} \cup \{y_t\}$ ▶ Update the Pareto set with the new observation

8: end for

9: return \mathcal{D}^h , \mathcal{P}

Pre-training dataset composition

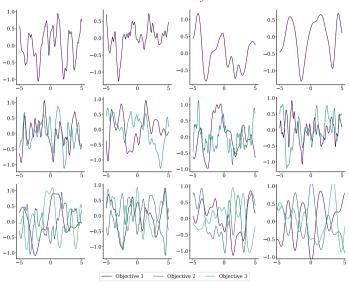
- Input dimensionality $d_x \sim \mathcal{U}(\{1,2\})$ and output dimensionality $d_y \sim \mathcal{U}(\{1,2,3\})$.
- For output correlations, with p = 1/2, either:
 - independent output dimensions are sampled
 - ▶ drawn from a multi-task GP, with task covariance defined as $k(i,j) = (CC^T + \text{diag}(\mathbf{v}))_{i,j}, i,j \in \{1, \dots, d_y\}$, with C is a low-rank matrix with rank $r \sim \mathcal{U}(\{1, \dots, d_y\})$.
- Data kernel along each output dimension:
 - ► Equally sampled from RBF, Matérn-3/2, Matérn-5/2
 - ► Standard deviation $\sigma \sim U([0.1, 1.0])$
 - ► Lengthscale $\ell \sim \mathcal{N}(2/3, 0.5)$ truncated to [0.1, 2.0].
- The sampled function values y were centered and normalized to lie within $[-1,1]^{d_y}$.

Pre-training dataset composition

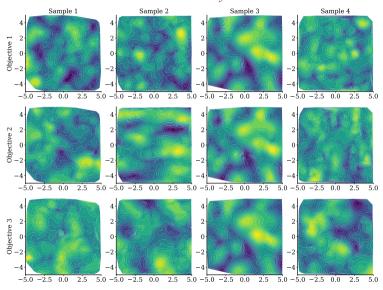
- Input dimensionality $d_x \sim \mathcal{U}(\{1,2\})$ and output dimensionality $d_y \sim \mathcal{U}(\{1,2,3\})$.
- For output correlations, with p = 1/2, either:
 - ▶ independent output dimensions are sampled
 - ▶ drawn from a multi-task GP, with task covariance defined as $k(i,j) = (CC^T + \text{diag}(\mathbf{v}))_{i,j}, i,j \in \{1, \dots, d_y\}$, with C is a low-rank matrix with rank $r \sim \mathcal{U}(\{1, \dots, d_y\})$.
- Data kernel along each output dimension:
 - ► Equally sampled from RBF, Matérn-3/2, Matérn-5/2
 - ► Standard deviation $\sigma \sim U([0.1, 1.0])$
 - ► Lengthscale $\ell \sim \mathcal{N}(2/3, 0.5)$ truncated to [0.1, 2.0].
- The sampled function values y were centered and normalized to lie within $[-1,1]^{d_y}$.

Completely synthetic dataset!

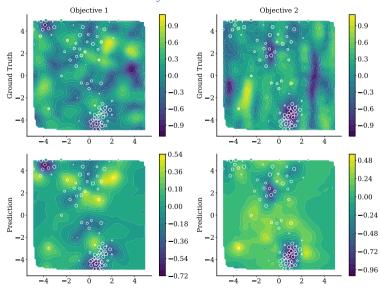
Samples from pre-training dataset, $d_x = 1$, $d_y = 3$



Samples from pre-training dataset, $d_x = 2$, $d_y = 3$



Optimization run example, $d_x = 2$, $d_y = 2$



Dimension-Agnostic Embedder				
Number of learnable positional tokens for x	4			
Number of learnable positional tokens for y	3			
Number of Transformer layers (L)	4			
Dimension of e_x and e_y	64			
Transformer Encoder-Decoder				
Dimension of Transformer inputs	64			
Point-wise feed-forward dimension of Transformer	256			
Number of self-attention layers in Transformer (B)	8			
Number of self-attention heads in Transformer	4			
	eads			
Number of hidden layers in policy head	3			
Number of components in GMM head (K)	20			
Number of hidden layers in MLP for each GMM component	3			
	aining			
Number of iterations	400000			
Number of burn-in iterations	393500			
Initial learning rate for warm-up iterations (lr ₁)	$1 \cdot 10^{-4}$			
Initial Learning rate after warm-up (lr ₂)	$4 \cdot 10^{-5}$			
Learning rate scheduling	Linearly increase from 0 to lr ₁ in the first 5% of total iterations;			
	Cosine decay to 0 over total iterations			
Size of prediction batch	32			
Size of policy-learning batch	16			
Weight on prediction loss (λ_t)	1.0			
discount factor (γ)	1.0			
Size of context set	$N_c \sim U[2, 50 \cdot d_{\tau}^{\tau}]$			
Size of target set (N_t)	$300 - N_c$			
Size of query set (N_a)	256			
Optimization budget T	100			
Noise level σ	0.0			
Number of initial observations during pretraining	1			
Evaluation				
Number of initial observations during test time	1			
Noise level σ	0.0			
Size of query set (N_q)	2048			
Optimization budget (T)	100			

 Positional tokens define max dimensionality the model can handle

Dimension-Ag	nostic Embedder	
Number of learnable positional tokens for x	4	
Number of learnable positional tokens for y	3	
Number of Transformer layers (L)	4	
Dimension of e_x and e_y	64	
	Encoder-Decoder	
Dimension of Transformer inputs	64	
Point-wise feed-forward dimension of Transformer	256	
Number of self-attention layers in Transformer (B)	8	
Number of self-attention heads in Transformer	4	
	eads	
Number of hidden layers in policy head	3	
Number of components in GMM head (K)	20	
Number of hidden layers in MLP for each GMM component	3	
	aining	
Number of iterations	400000	
Number of burn-in iterations	393500	
Initial learning rate for warm-up iterations (lr ₁)	$1 \cdot 10^{-4}$	
Initial Learning rate after warm-up (lr ₂)	$4 \cdot 10^{-5}$	
Learning rate scheduling	Linearly increase from 0 to lr_1 in the first 5% of total iterations;	
	Cosine decay to 0 over total iterations	
Size of prediction batch	32	
Size of policy-learning batch	16	
Weight on prediction loss (λ_{rl})	1.0	
discount factor (γ)	1.0	
Size of context set	$N_c \sim U[2, 50 \cdot d_x^{\tau}]$	
Size of target set (N_t)	$300 - N_c$	
Size of query set (N_a)	256	
Optimization budget T	100	
Noise level σ	0.0	
Number of initial observations during pretraining	1	
Eva	luation	
Number of initial observations during test time	1	
Noise level σ	0.0	
Size of query set (N_q)	2048	
Optimization budget (T)	100	

- Positional tokens define max dimensionality the model can handle
- For comparison: TabPFN uses L=12, $\mathbf{e}_x \in \mathbb{R}^{512}$ to handle $d_x \approx 50$

Dimension-Ag	nostic Embedder	
Number of learnable positional tokens for x	4	
Number of learnable positional tokens for y	3	
Number of Transformer layers (L)	4	
Dimension of e_x and e_y	64	
	Encoder-Decoder	
Dimension of Transformer inputs	64	
Point-wise feed-forward dimension of Transformer	256	
Number of self-attention layers in Transformer (B)	8	
Number of self-attention heads in Transformer	4	
	leads	
Number of hidden layers in policy head	3	
Number of components in GMM head (K)	20	
Number of hidden layers in MLP for each GMM component	3	
	aining	
Number of iterations	400000	
Number of burn-in iterations	393500	
Initial learning rate for warm-up iterations (lr ₁)	$1 \cdot 10^{-4}$	
Initial Learning rate after warm-up (lr ₂)	$4 \cdot 10^{-5}$	
Learning rate scheduling	Linearly increase from 0 to lr ₁ in the first 5% of total iterations;	
	Cosine decay to 0 over total iterations	
Size of prediction batch	32	
Size of policy-learning batch	16	
Weight on prediction loss (λ_{rl})	1.0	
discount factor (γ)	1.0	
Size of context set	$N_c \sim U[2, 50 \cdot d_x^{\tau}]$	
Size of target set (N_t)	$300 - N_c$	
Size of query set (N_a)	256	
Optimization budget T	100	
Noise level σ	0.0	
Number of initial observations during pretraining	1	
Eva	luation	
Number of initial observations during test time	1	
Noise level σ	0.0	
Size of query set (N_q)	2048	
Optimization budget (T)	100	

- Positional tokens define max dimensionality the model can handle
- For comparison: TabPFN uses L=12, $\mathbf{e}_x \in \mathbb{R}^{512}$ to handle $d_x \approx 50$
- ≈ 1.1 M parameters

Dimension	-Agnostic Embedder	
Number of learnable positional tokens for x	4	
Number of learnable positional tokens for y	3	
Number of Transformer layers (L)	4	
Dimension of e_x and e_y	64	
	er Encoder–Decoder	
Dimension of Transformer inputs	64	
Point-wise feed-forward dimension of Transformer	256	
Number of self-attention layers in Transformer (B)	8	
Number of self-attention heads in Transformer	4	
	Heads	
Number of hidden layers in policy head 3		
Number of components in GMM head (K)	20	
Number of hidden layers in MLP for each GMM compone		
	Training	
Number of iterations	400000	
Number of burn-in iterations	393500	
Initial learning rate for warm-up iterations (lr ₁)	$1 \cdot 10^{-4}$	
Initial Learning rate after warm-up (lr ₂)	$4 \cdot 10^{-5}$	
Learning rate scheduling	Linearly increase from 0 to lr ₁ in the first 5% of total iterations	
	Cosine decay to 0 over total iterations	
Size of prediction batch	32	
Size of policy-learning batch	16	
Weight on prediction loss (λ_{rl})	1.0	
discount factor (γ)	1.0	
Size of context set	$N_c \sim U[2, 50 \cdot d_x^{\tau}]$	
Size of target set (N_t)	$300 - N_c$	
Size of query set (N_q)	256	
Optimization budget T	100	
Noise level σ	0.0	
Number of initial observations during pretraining	1	
1	Evaluation	
Number of initial observations during test time	1	
Noise level σ	0.0	
Size of query set (N_q)	2048	
Optimization budget (T)	100	

- Positional tokens define max dimensionality the model can handle
- For comparison: TabPFN uses L=12, $\mathbf{e}_x \in \mathbb{R}^{512}$ to handle $d_x \approx 50$
- ≈ 1.1 M parameters
- Training time ≈ 2 days
- The model "learns" from 100-iterations tasks ⇒ outside is 00D!

Dimension-A	Agnostic Embedder	
Number of learnable positional tokens for x	4	
Number of learnable positional tokens for y	3	
Number of Transformer layers (L)	4	
Dimension of e_x and e_y	64	
	Encoder-Decoder	
Dimension of Transformer inputs	64	
Point-wise feed-forward dimension of Transformer	256	
Number of self-attention layers in Transformer (B)	8	
Number of self-attention heads in Transformer	4	
	Heads	
Number of hidden layers in policy head	3	
Number of components in GMM head (K)	20	
Number of hidden layers in MLP for each GMM componen		
	Training Training	
Number of iterations	400000	
Number of burn-in iterations	393500	
Initial learning rate for warm-up iterations (lr ₁)	$1 \cdot 10^{-4}$	
Initial Learning rate after warm-up (lr ₂)	$4 \cdot 10^{-5}$	
Learning rate scheduling	Linearly increase from 0 to lr ₁ in the first 5% of total iterations	
	Cosine decay to 0 over total iterations	
Size of prediction batch	32	
Size of policy-learning batch	16	
Weight on prediction loss (λ_{tl})	1.0	
discount factor (γ)	1.0	
Size of context set	$N_c \sim U[2, 50 \cdot d_{\tau}^{\tau}]$	
Size of target set (N_t)	$300 - N_c$	
Size of query set (N_a)	256	
Optimization budget T	100	
Noise level σ	0.0	
Number of initial observations during pretraining	1	
E	valuation	
Number of initial observations during test time	1	
Noise level σ	0.0	
Size of query set (N_a)	2048	
Optimization budget (T)	100	

- Positional tokens define max dimensionality the model can handle
- For comparison: TabPFN uses L=12, $\mathbf{e}_x \in \mathbb{R}^{512}$ to handle $d_x \approx 50$
- ≈ 1.1M parameters
- Training time ≈ 2 days
- The model "learns" from 100-iterations tasks ⇒ outside is 00D!
- Query set = grid for evaluations!
 Increases inference time linearly.

Results

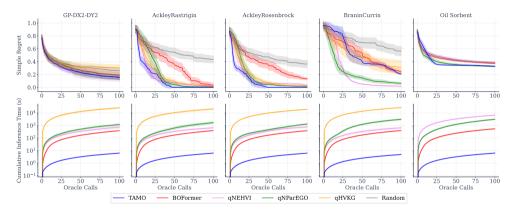


Figure 3: Synthetic and real-world multi-objective benchmarks: simple regret (top) and cumulative inference time (bottom) vs. oracle calls (mean \pm 95% CIs over 30 runs). TAMO achieves competitive regret while cutting proposal time by $50 \times -1000 \times$.

Results - Single-objective BO

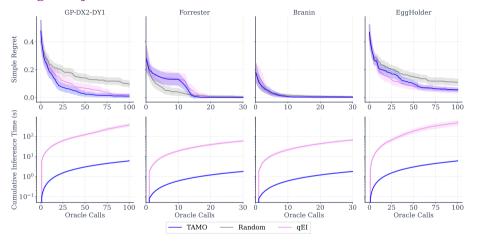


Figure S1: Simple regret and inference time on **synthetic examples for single-objective optimization**. Mean with 95% confidence intervals computed across 30 runs with random initial observations. **Again, TAMO matches state-of-the-art regret while dramatically reducing proposal time.**

Results - Out of distribution examples

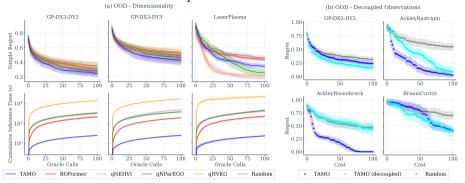


Figure 4: **Out-of-distribution evaluations.** (a) **Dimensionality:** simple regret (top) and cumulative inference time (bottom) on tasks whose input/output dimensions are unseen at pretraining. (b) **Decoupled observations:** regret vs. *cumulative cost* when, at step t, the optimizer may observe both objectives at cost 2 (dark blue) or only one at cost 1 (cyan). Curves show means with 95% confidence intervals over 30 runs with random initial observations. **TAMO offers promising generalization capabilities across unseen dimensionalities and decoupled feedback settings, delivering orders-of-magnitude faster proposals while maintaining competitive regret.**

Universal black-box optimization model

- Extending to constrained, multi-source, preferential, cost-aware, etc...Does not require a paradigm shift, mostly pre-training modification
- Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Universal black-box optimization model

- Extending to constrained, multi-source, preferential, cost-aware, etc...Does not require a paradigm shift, mostly pre-training modification
- Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually...

The policy will quickly overfit

Universal black-box optimization model

- Extending to constrained, multi-source, preferential, cost-aware, etc...Does not require a paradigm shift, mostly pre-training modification
- Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually...

- The policy will quickly overfit 🤐
- Does not scale yet

Universal black-box optimization model

- Extending to constrained, multi-source, preferential, cost-aware, etc...Does not require a paradigm shift, mostly pre-training modification
- Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually...

- The policy will quickly overfit 🤐
- Does not scale vet
- Highly black box method 😐

Universal black-box optimization model

- Extending to constrained, multi-source, preferential, cost-aware, etc...Does not require a paradigm shift, mostly pre-training modification
- Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually...

- The policy will quickly overfit 🤐
- Does not scale yet
- Highly black box method

Enough work avenues to fill several PhD theses

- Scaling to high-dimensional settings, handling structured objects
- Explainability
- ullet Pre-training dataset \lower Prior from a Bayesian perspective. Its composition is key.

Appendix 🤴

Two-steps training

• Warm up backbone on prediction task by minimizing a negative log-likelihood over $(\mathcal{D}^c, \mathcal{D}^p)$

$$\mathcal{L}^{(p)}(\theta) = -\mathbb{E}_{\tau \sim p(\tau)} \left[\frac{1}{N_p d_y^{\tau}} \sum_{i=1}^{N_p} \sum_{k=1}^{d_y^{\tau}} \log p(y_{i,k}^p \mid \mathbf{x}_i^p, \mathcal{D}^c) \right]$$

- → promotes accurate in-context regression and useful representations
- **②** Then, optimize the policy $\pi_{\theta}(\mathbf{x} \mid \mathbf{s})$ with trajectory objective

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau)} \left[\mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r_{t} \right] \right]$$

ightarrow aligns learning signal with improvements in Pareto quality alongside the prediction objective.

The overall objective combines both terms:

$$\mathcal{L}(\theta) = \mathcal{L}^{(p)}(\theta) + \lambda_{rl} \mathcal{L}^{(rl)}(\theta), \qquad \mathcal{L}^{(rl)}(\theta) = -I(\theta),$$

- ullet $\mathscr{L}^{(p)}$ and $\mathscr{L}^{(\mathsf{rl})}$ calculated from two distinct forward passes with different datasets
- Then summed for one single backward pass
- Training on full trajectories directly rewards long-horizon improvements,
- Amortization enables learning from many tasks offline.

Pre-training

Algorithm S1 TAMO Pre-Training Algorithm

23: end for

Require: task distribution $p(\tau)$, prediction context size N_c , prediction target size N_n , query budget T, number of burn-in iterations n, number of total iterations num total iterations 1: **for** iteration $i = 1, \dots, \text{num}$ total iterations **do** 2: ▶ Prediction task 3: Sample a task $\tau \sim p(\tau)$ Sample prediction batches $\mathcal{D}^c = \{(x_i^c, y_i^c)\}_{i=1}^{N_c}$ and $\mathcal{D}^p = \{x_i^p\}_{i=1}^{N_p}$ from τ Model predicts outcomes: $p(y_{i-k}^p \mid x_i^p, \mathcal{D}^c), \forall x_i^p \in \mathcal{D}^p$ 5. 6: if $i < \eta$ then Update model by minimizing the prediction loss $\mathcal{L}^{(p)}$ (Equation 5) 8: else ▷ Policy learning task after burn-in phase 9: Sample a new task $\tau \sim p(\tau)$ Sample query set \mathcal{D}^q 10: Initialize a history set $\mathcal{D}^h \leftarrow \{(\boldsymbol{x}_0^h, y_0^h)\}, \boldsymbol{x}_0^h \sim \mathcal{D}^q$ 11: 12: Set reference point r and calculate optimal Hypervolume: $HV^* \leftarrow HV(\mathcal{P}(\mathcal{X}) \mid \mathbf{r})$ Initialize Pareto set $\mathcal{P} \leftarrow \{y_0^h\}$ 13: for $t = 1, \dots, T$ do 14: Select next query point: $x_t \sim \pi_{\theta}(\cdot \mid \mathcal{D}^h, t, T)$ 15: $y_t \leftarrow \text{Evaluate}(\boldsymbol{x}_t, \tau)$ 16: Update history set: $\mathcal{D}^h \leftarrow \mathcal{D}^h \cup \{(\boldsymbol{x}_t, y_t)\}$ 17: Update Pareto set: $\mathcal{P} \leftarrow \mathcal{P} \cup \{y_t\}$ 18: Compute reward: $r_t = \frac{HV(\mathcal{P}|\mathbf{r})}{LV(\mathbf{r})}$ 19: 20: end for 21: Update model using the overall objective \mathcal{L} (Equation 6) 22: end if