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Black-box optimization
Let𝒳 be a design space and 𝑓 an objective function, we seek

x = argmax
x∈𝒳

𝑓(x)

No information about 𝑓: gradients, convexity, invariances…
Can only evaluate 𝑦𝑖 = 𝑓(x𝑖) + 𝜀
Collecting observations𝒟𝑡 = {(x𝑖, 𝑦𝑖)}𝑡𝑖=1

Bayesian Optimization tackles this problem by learning a cheap-to-evaluate statistical surrogate of 𝑓

𝑓(x) ∼ 𝒢𝒫(𝜇𝜃1 (x), 𝑘𝜃2 (x, x ′))
Yields next sample to query x𝑡 selected sequentially based on an acquisition function

x𝑡+1 = argmax
x∈𝒳

𝛼𝜃3 (x|𝒟𝑡)

Evaluate 𝑓(x𝑡+1); append𝒟𝑡+1 ← 𝒟𝑡 ∪ {(x𝑡+1, 𝑦𝑡+1)}; update surrogate 𝑝(𝑓|𝒟𝑡+1), repeat until satisfied.
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Multi-objective optimization
We now observe a vector of objectives f(x) = [𝑓1(x), … , 𝑓𝑀(x)] ∈ ℝ𝑀
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𝒫 ⊂ ℝ𝑚 set of objective vectors and reference r ∈ ℝ𝑚 with r ⪯ p for all p ∈ 𝒫 (e.g., 𝑟𝑖 ≤ minp∈𝒫 𝑝𝑖).
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Caveats
1 Performances highly dependent on surrogate and acquisition function pair

▶ Requires careful, expert selection of the ideal combination
▶ Will not transfer to the next problem

→ “Learn” the language of optimization

2 Slow in high-throughput settings due to vanilla GP cubic complexity
→ Do a huge offline pre-training step, reduce inference to a feedforward pass

3 Most of the time myopic, focused on 1-step optimality
→ Train over long optimization horizons using RL

4 Learning from previous campaigns not straightforward
▶ What if I previously optimized 𝑓1(x) alone, does that help in optimizing [𝑓1(x), 𝑓2(x)]?
▶ What if I previously optimized f(𝑥1, … , 𝑥𝑑), does that help in optimizing f(𝑥1, … , 𝑥𝑑, 𝑥𝑑+1)?

→ Use dimension-agnostic task embeddings

Solution: Task-Agnostic Amortization
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Multi-
objective

End-to-end
amortized

Input
agnostic

Output
agnostic

Vanilla MOBO (Daulton et al., 2020) ✁ ✂ N/A N/A
BOFormer (Hung et al., 2025) ✁ ✂ N/A ✂
NAP (Maraval et al., 2023) ✂ ✁ ✂ ✂
DANP (Lee et al., 2025) ✂ ✂ ✁ ✂

TAMO (this work) ✁ ✁ ✁ ✁

Figure 1: Comparison of multi-objective optimization workflows. (Top left) Previous methods like
traditional MOBO or acquisition-only amortized BOFormer (Hung et al., 2025) are bottlenecked by a
slow process of fitting a GP surrogate. (Top right) TAMO is fully amortized: a dimension-agnostic
transformer policy is trained once, offline, on diverse synthetic tasks, and at deployment maps the
history to the next query in a single forward pass.

Bayesian optimization (Volpp et al., 2020; Chen et al., 2022; Maraval et al., 2023; Zhang et al., 2025;
Hung et al., 2025), but few address the multi-objective setting. For instance, Hung et al. (2025) only
amortizes the acquisition function calculation while still relying on a GP surrogate, and its pretrained
model is tied to a fixed number of objectives, which prevents transfer across heterogeneous tasks. A
method that tackles these challenges would let practitioners pool heterogeneous legacy datasets for
pretraining, resulting in improved outcomes in scarce-data regimes. It would also enable reusing a sin-
gle optimizer as design spaces and objective counts change, and issue instant proposals in closed-loop
laboratories, high-throughput campaigns, reducing overhead when evaluations are cheap or parallel.

Contributions.

• We introduce TAMO, a fully amortized policy for multi-objective optimization that maps the
observed history directly to the next query (Figure 1). Training uses reinforcement learning
to optimize a hypervolume-oriented utility over entire trajectories, encouraging long-horizon
rather than one-step gains. At inference, proposals are produced by a single forward pass.

• TAMO is dimension agnostic on both inputs and outputs: we introduce a transformer architec-
ture with a novel dimension-aggregating embedder that jointly represents all input features
and objective values regardless of dimensionality. This enables pretraining on heterogeneous
tasks, synthetic or drawn from real meta-datasets, and transfer to new problems without
retraining. To our knowledge, this is the first end-to-end, dimension-agnostic architecture
for black-box optimization, let alone MOO (Figure 1, bottom).

• We evaluate TAMO on synthetic and real multi-objective tasks, observing 50→–1000→
lower wall-clock proposal time than GP-based MOBO and baselines such as BOFORMER,
which amortizes the acquisition but still relies on task-specific surrogates, while matching
Pareto quality and sample efficiency. We further provide an empirical assessment of the
generalization capabilities of TAMO, along with its sensitivity to deployment knobs.
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TAMO: architecture at a glance

Shared backbone. Each forward pass uses either a prediction batch (context, targets) or an
optimization batch (history, queries), traversing the same core components.
Optimization ⟺ Predicting the optimum.

1 Dimension-agnostic embedder: scalar→vector maps
producing tokens independent of input/output dim.

2 Transformer encoder: aggregates variable-size
histories/contexts into a compact summary.

3 Task conditioning: a few learned tokens injected late
to specialize the computation.

4 Two heads: a prediction head (density) and a policy
head (acquisition over query set).
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Pretraining

Task distribution. Synthetic MOO tasks
𝜏 ∼ 𝑝(𝜏) with f𝜏 ∶ 𝒳 ⊂ ℝ𝑑𝜏𝑥 →ℝ𝑑𝜏𝑦 .
Heterogeneous 𝑑𝜏𝑥, 𝑑𝜏𝑦 ⇒
dimension-agnostic policy.

Per step: two distinct mini-batches

Policy-learning:

history𝒟 ℎ = {(x ℎ, y ℎ)}𝑁ℎ
ℎ=1

query set𝒟 𝑞 = {x 𝑞}𝑁𝑞
𝑞=1

policy picks the best x 𝑞 given𝒟 ℎ.

Prediction: fresh function draw;
sample𝑁 pairs and split into
context𝒟 𝑐 = {(x 𝑐, y 𝑐)}𝑁𝑐

𝑐=1 and
targets𝒟 𝑝 = {x 𝑝}𝑁𝑝

𝑝=1

for in-context regression.

Task sampler 𝑝(𝜏) Shared transformer
(dimension-agnostic)

Policy batch
𝒟 ℎ, 𝒟 𝑞

Prediction batch
𝒟 𝑐, 𝒟 𝑝

Policy head
select 𝑥⋆

𝔼𝜋𝜃 􏿯∑
𝑇
𝑡=1 𝛾𝑡−1𝑟𝑡􏿲

𝑟𝑡 = HV􏿴𝒫(𝒟 ℎ) ∣ r􏿷

Prediction head
1

𝑁𝑝 𝑑𝜏𝑦
∑𝑁𝑝

𝑖=1∑
𝑑𝜏𝑦
𝑘=1 log 𝑝􏿴𝑦

𝑝
𝑖,𝑘 | x

𝑝
𝑖 ,𝒟 𝑐􏿷
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Dimension-agnostic embedder

Learnable maps (NNs) 𝑒𝑥, 𝑒𝑦 ∶ ℝ→ℝ𝑑𝑒 applied element-wise:

e𝑥 = 𝑒𝑥(x) ∈ ℝ𝑑𝜏𝑥×𝑑𝑒 , e𝑦 = 𝑒𝑦(y) ∈ ℝ𝑑𝜏𝑦×𝑑𝑒 .

After 𝐿 transformer layers over [e𝑥; e𝑦] we get contextualized
tokens ̂e𝑥, ̂e𝑦. Draw per-dimension tokens p

(𝑗)
𝑥 , p(𝑘)𝑦 ∈ ℝ𝑑𝑒 sampled

per batch from fixed pools of learned embeddings, then:

ẽ𝑥,𝑗 = ê𝑥,𝑗 ⊙ p(𝑗)𝑥 , ẽ𝑦,𝑘 = ê𝑦,𝑘 ⊙ p(𝑘)𝑦

ē𝑥 =
1
𝑑𝜏𝑥

𝑑𝜏𝑥
􏾜
𝑗=1

ẽ𝑥,𝑗, ē𝑦 =
1
𝑑𝜏𝑦

𝑑𝜏𝑦
􏾜
𝑘=1

ẽ𝑦,𝑘, E = ē𝑥 + ē𝑦.

→ breaks permutation symmetry; features/objectives remain
identifiable.

8



Transformer encoder-decoder
Transformer layers split into 𝐵 = 𝐵1 + 𝐵2

𝐵1: history/context tokens self-attend⇒ Ê ℎ or Ê 𝑐; queries/targets cross-attend to them⇒ Ê 𝑞 or Ê 𝑝.
This is the only path for queries/targets to use past data.

𝐵2: drop history/context; keep query/target tokens + task-specific tokens. An attention mask enforces that
query/target tokens only attend to task-specific tokens.

Task-specific tokens

Prediction: a prediction-task token and an output-index token p(𝑘)
𝑦 .

Optimization: an optimization-task token, a time-budget token 𝑔time = MLP𝜃􏿴(𝑇−𝑡)/𝑇􏿷, and an
input-dimension token∑𝑑𝜏𝑥

𝑗=1 p
(𝑗)
𝑥 .

Heads
Prediction head (per scalar target):

{𝜙𝑖ℓ, 𝜇𝑖ℓ, 𝜎𝑖ℓ}𝐾𝑙=1 = MLP𝜃(Ê
𝑝
𝑖 )

𝑝􏿴𝑦𝑝𝑖,𝑘 ∣ x
𝑝
𝑖 ,𝒟 𝑐􏿷 =

𝐾
􏾜
ℓ=1

𝜙𝑖ℓ 𝒩􏿴𝑦𝑝𝑖,𝑘; 𝜇𝑖ℓ, 𝜎2𝑖ℓ􏿷

Policy head (over queries):

𝛼𝑖 = MLP𝜃(Ê
𝑞
𝑖 )

𝜋𝜃(x
𝑞
𝑖 ) =

𝑒𝛼𝑖
∑𝑟 𝑒𝛼𝑟

9



Inference
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Algorithm S1 TAMO Pre-Training Algorithm

Require: task distribution p(ω), prediction context size Nc, prediction target size Np, query budget
T , number of burn-in iterations ε, number of total iterations num_total_iterations

1: for iteration i = 1, . . . , num_total_iterations do
2: ϑ Prediction task
3: Sample a task ω → p(ω)

4: Sample prediction batches Dc
= {(xc

i , y
c
i )}

Nc
i=1 and Dp

= {xp
i }

Np

i=1 from ω
5: Model predicts outcomes: p(ypi,k | xp

i ,Dc
), ↑xp

i ↓ Dp

6: if i ↔ ε then
7: Update model by minimizing the prediction loss L(p) (Equation 5)
8: else ϑ Policy learning task after burn-in phase
9: Sample a new task ω → p(ω)

10: Sample query set Dq

11: Initialize a history set Dh ↗ {(xh
0 , y

h
0 )},xh

0 → Dq

12: Set reference point r and calculate optimal Hypervolume: HV→ ↗ HV(P(X ) | r)
13: Initialize Pareto set P ↗ {yh0 }
14: for t = 1, . . . , T do
15: Select next query point: xt → ϖω(· | Dh, t, T )
16: yt ↗ Evaluate(xt, ω)
17: Update history set: Dh ↗ Dh ↘ {(xt, yt)}
18: Update Pareto set: P ↗ P ↘ {yt}
19: Compute reward: rt =

HV(P|r)
HV→

20: end for
21: Update model using the overall objective L (Equation 6)
22: end if
23: end for

Algorithm S2 TAMO Test-Time Algorithm

Require: Pre-trained TAMO model, new task ωtest, query budget T , initial history set Dh
0 := {xh, yh}

(with random samples if empty),
1: Dh ↗ Dh

0 ϑ Initialize the history set
2: P ↗ {yh} ϑ Initialize the Pareto set
3: for t = 1, . . . , T do
4: xt → ϖω(· | Dh, t, T ) ϑ Sample the next query location
5: yt ↗ Evaluate(xt, ωtest)
6: Dh ↗ Dh ↘ {(xt, yt)} ϑ Update the history set
7: P ↗ P ↘ {yt} ϑ Update the Pareto set with the new observation
8: end for
9: return Dh,P

14
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Pre-training dataset composition

Input dimensionality 𝑑𝑥 ∼ 𝒰({1, 2}) and output dimensionality 𝑑𝑦 ∼ 𝒰({1, 2, 3}).

For output correlations, with 𝑝 = 1/2, either:
▶ independent output dimensions are sampled
▶ drawn from a multi-task GP, with task covariance defined as 𝑘(𝑖, 𝑗) = (CC𝑇 + diag(v))𝑖,𝑗, 𝑖, 𝑗 ∈ {1,⋯ , 𝑑𝑦},
with C is a low-rank matrix with rank 𝑟 ∼ 𝒰({1,⋯ , 𝑑𝑦}).

Data kernel along each output dimension:
▶ Equally sampled from RBF, Matérn-3/2, Matérn-5/2
▶ Standard deviation 𝜎 ∼ 𝑈([0.1, 1.0])
▶ Lengthscale ℓ ∼ 𝒩 (2/3, 0.5) truncated to [0.1, 2.0].

The sampled function values y were centered and normalized to lie within [−1, 1]𝑑𝑦 .

Completely synthetic dataset!
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Samples from pre-training dataset, 𝑑𝑥 = 1, 𝑑𝑦 = 3
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Samples from pre-training dataset, 𝑑𝑥 = 2, 𝑑𝑦 = 3
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Optimization run example, 𝑑𝑥 = 2, 𝑑𝑦 = 2
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C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETERS

Dimension-Agnostic Embedder
Number of learnable positional tokens for x 4

Number of learnable positional tokens for y 3

Number of Transformer layers (L) 4

Dimension of ex and ey 64

Transformer Encoder–Decoder
Dimension of Transformer inputs 64
Point-wise feed-forward dimension of Transformer 256

Number of self-attention layers in Transformer (B) 8

Number of self-attention heads in Transformer 4

Heads
Number of hidden layers in policy head 3

Number of components in GMM head (K) 20

Number of hidden layers in MLP for each GMM component 3

Training
Number of iterations 400000

Number of burn-in iterations 393500

Initial learning rate for warm-up iterations (lr1) 1 · 10→4

Initial Learning rate after warm-up (lr2) 4 · 10→5

Learning rate scheduling Linearly increase from 0 to lr1 in the first 5% of total iterations;
Cosine decay to 0 over total iterations

Size of prediction batch 32

Size of policy-learning batch 16

Weight on prediction loss (ωrl) 1.0
discount factor (ε) 1.0
Size of context set Nc → U [2, 50 · dωx]
Size of target set (Nt) 300↑Nc

Size of query set (Nq) 256

Optimization budget T 100

Noise level ϑ 0.0
Number of initial observations during pretraining 1

Evaluation
Number of initial observations during test time 1

Noise level ϑ 0.0
Size of query set (Nq) 2048

Optimization budget (T ) 100

Table S1: Hyperparameter settings for TAMO evaluated in Section 5.

C.2 COMPUTATIONAL RESOURCES

We trained TAMO on one NVIDIA H100 80GB HBM3 GPU. All models are evaluated on Tesla
V100-SXM2-32GB GPUs.

C.3 TEST FUNCTIONS

GP samples optimization. This benchmark comprises 30 independent multi-output GP draws with
dx = 2 inputs and dy = 2 objectives in the dimensional in-distribution setting (Section 5.1), and
dx = 3, dy ↓ {2, 3} in the dimensional out-of-distribution setting (Section 5.2). We sample each task
using the same data-generating process described in Section C.1 and report average performance over
the 30 draws.

Ackley–Rastrigin dx = 2, dy = 2. Two-objective problem formed by pairing Ackley and Rastrigin
and maximizing their negations:

Ackley(x) = ↑20 exp

(
↑ 0.2

√√√√ 1
2

2∑

i=1

x2
i

)
↑ exp

(
1
2

2∑

i=1

cos(2ϖxi)

)
+ e+ 20,

Rastrigin(x) = 20 +

2∑

i=1

(
x2
i ↑ 10 cos(2ϖxi)

)
,

And we set f (1)
(x) = ↑Ackley(x), f (2)

(x) = ↑Rastrigin(x).

15

Positional tokens define max
dimensionality the model can handle

For comparison: TabPFN uses 𝐿 = 12,
e𝑥 ∈ ℝ512 to handle 𝑑𝑥 ≈ 50

≈ 1.1M parameters

Training time ≈ 2 days

The model “learns” from 100-iterations
tasks ⟹ outside is OOD!

Query set = grid for evaluations!
Increases inference time linearly.
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Figure 3: Synthetic and real-world multi-objective benchmarks: simple regret (top) and cumu-
lative inference time (bottom) vs. oracle calls (mean ± 95% CIs over 30 runs). TAMO achieves
competitive regret while cutting proposal time by 50→–1000→.

5 EXPERIMENTS

We evaluate TAMO on synthetic GP tasks and standard analytic testbeds, as well as on real-world
problems (Section 5.1). Subsequently, Section 5.2 studies the generalization capabilities of TAMO,
e.g., with respect to unseen task dimensionalities during training on both synthetic tasks and a
real-world problem. We conclude with several ablation studies related to the batch size and query set
size employed at inference time (Section 5.3). Additional experiments can be found in Appendix D.
We emphasize that a single pretrained model is used across all experiments.
Baselines. We compare against strong MOBO baselines, including decomposition and indicator-
based methods (qNParEGO Knowles 2006, qNEHVI Daulton et al. 2020, qHVKG Daulton et al.
2023a), sequence-modeling MOBO (BOFormer Hung et al. 2025), and a random search baseline.
Baselines are tuned with their recommended defaults unless otherwise noted.

Metrics. We report performance via HV-based simple regret at a fixed evaluation budget. We also
measure wall-clock proposal time end-to-end, which for GP-based baselines includes surrogate
fitting and acquisition optimization, and for our method consists of a single forward pass. For
single-objective, we additionally report standard simple regret.

Implementation. TAMO is implemented using PyTorch (Paszke et al., 2019). Hyperparameter
settings can be found in Appendix C.1. Code will be made available upon acceptance. For all vanilla
MOBO baselines, we used the implementation from the BoTorch library (Balandat et al., 2020).
For BOFormer (Hung et al., 2025), we used the publicly available implementation and pretrained
model from its official code repository. To ensure a fair comparison, the domain size (i.e., the size
of the candidate query set) during testing is set to 2048, consistent with the configuration used for
TAMO.

5.1 SYNTHETIC AND REAL-WORLD TASKS

Synthetic examples. On synthetic MOO testbeds (details in Section C.3), TAMO attains competitive
or better simple regret across the entire budget (Figure 3). On GP-DX2–DY2, which is in-distribution
for all methods (30 GP draws), TAMO performs on par with the best GP baselines. On the remaining
three problems, out-of-distribution for all baselines, TAMO yields the strongest performance, except
on Branin–Currin where qNEHVI and qNParEGO do better. We hypothesize this gap stems from the
objectives in being well described by long length scales, outside the reach of our pretraining corpus:
synthetic GP samples using lengthscales ω ↑ N (2/3, 0.5) over [↓5, 5]dx (Section C.1). Lastly, our
method can also be applied effortlessly to single-objective BO, yielding competitive results compared
to other GP-based alternatives (Figure S1).
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Results - Single-objective BO
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Ackley–Rosenbrock dx = 2, dy = 2. We pair Ackley (above) with Rosenbrock:

Rosenbrock(x) = 100(x2 → x2
1)

2
+ (1→ x1)

2.

And we set f (1)
(x) = →Ackley(x), f (2)

(x) = →Rosenbrock(x).

Branin–Currin dx = 2, dy = 2. Branin:

Branin(x1, x2) =
(
x2 → bx2

1 + cx1 → r
)2

+ s
(
1→ t

)
cos(x1) + s,

where b = 5.1
4ω2 , c =

5
ω , r = 6, s = 10, t = 1

8ω ,

and Currin:

Currin(z) =
(
1→ e→1/(2z2)

)
2300z31 + 1900z21 + 2092z1 + 60

100z31 + 500z21 + 4z1 + 20
.

We maximize f (1)
(x) = →Branin(x) and f (2)

(x) = →Currin(x).

Oil sorbent dx = 2, dy = 2. We also evaluate on the oil-sorbent multi-objective problem (Wang
et al., 2020; Daulton et al., 2022). The original task controls a material’s composition and man-
ufacturing with 5 ordinal and 2 continuous parameters to jointly maximize three objectives: oil
absorbing capacity, mechanical strength, and water contact angle. In our
study, we fix the ordinal parameters to constant values to obtain a 2D continuous design space with
the same three objectives.

Laser-Plasma dx = 4, dy = 3. We evaluate on the laser–plasma acceleration dataset (Irshad
et al., 2023), which contains 1025 particle-in-cell simulations of a laser wakefield accelerator. Each
record provides 4 continuous inputs (plasma density, upramp length, laser focus,
downramp length) and 3 objectives (total charge, distance of median, target
energy). To obtain a continuous black-box from tabulated simulations, we perform linear inter-
polation. This task differs in dimensionality from our pretraining distribution, providing an OOD
evaluation of cross-dimensional transfer.

Normalization. For all problems, we linearly rescale inputs to a common domain [→5, 5]dx and
rescale each objective independently to [→1, 1] prior to logging and hypervolume computation.

D ADDITIONAL EXPERIMENTS

Figure S1: Simple regret and inference time on synthetic examples for single-objective optimization.
Mean with 95% confidence intervals computed across 30 runs with random initial observations.
Again, TAMO matches state-of-the-art regret while dramatically reducing proposal time.
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Results - Out of distribution examples
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Figure 4: Out-of-distribution evaluations. (a) Dimensionality: simple regret (top) and cumulative
inference time (bottom) on tasks whose input/output dimensions are unseen at pretraining. (b)
Decoupled observations: regret vs. cumulative cost when, at step t, the optimizer may observe both
objectives at cost 2 (dark blue) or only one at cost 1 (cyan). Curves show means with 95% confidence
intervals over 30 runs with random initial observations. TAMO offers promising generalization
capabilities across unseen dimensionalities and decoupled feedback settings, delivering orders-
of-magnitude faster proposals while maintaining competitive regret.

Real-world example. We compare our model, pretrained only with synthetic GP samples, with
other baselines on the real-world oil sorbent multi-objective problem (Daulton et al., 2022). The
result is shown in Figure 3. TAMO remains competitive with GP-based alternatives, yielding the best
performance, closely followed by qNParEGO.

Wall-clock time. Nevertheless, the primary advantage is speed: cumulative inference time is lower by
roughly 50!–1000!, growing slowly with budget because each proposal is a single forward pass. By
contrast, GP-based methods incur substantial overhead from repeated surrogate refits and acquisition
optimization. Even BOFormer, which amortizes the acquisition but still relies on a GP surrogate,
remains noticeably slower than TAMO.

5.2 GENERALIZATION

We investigate the generalization capabilities of TAMO in two different test-time scenarios: unseen
dimensionalities, or decoupled observations.

Out-of-distribution dimensionalities. We test cross-dimensional transfer by pretraining TAMO on
GP tasks with dx→{1, 2} and dy→{1, 2, 3}, then evaluating on (i) GP-DX3–DY2 and GP-DX3–DY3,
and (ii) the real-world LaserPlasma task (dx=4, dy=3; Section C.3), all with unseen input/output
dimensionalities. On the synthetic OOD settings (Figure 4a, left, middle), TAMO matches the best
GP baselines in simple regret across the budget. On LaserPlasma (Figure 4a, right), it outperforms
BOFormer (which amortizes only the acquisition) but trails conventional MOBO baselines in regret.
Across all cases, TAMO retains orders-of-magnitude advantages in cumulative inference time.

Decoupled observations. We next test generalization to decoupled settings, where objectives can
be measured independently, a common setting when jointly observing all objectives is infeasible
or costly, also arising when historical logs contain partial objective labels. Budget T=100 with
cost 1 per objective: a full evaluation costs dy, a single-objective probe costs 1. Hence, a coupled
policy can do at most T/dy full evals, while a decoupled one can take up to T single-objective
measurements. Figure 4b plots regret vs. cumulative cost. On GP-DX2–DY2, Ackley–Rastrigin,
and Branin–Currin, the decoupled variant of TAMO closely tracks the coupled policy, indicating that
TAMO can accommodate partial-feedback acquisition without retraining, offering a flexible trade-
off between measurement cost and optimization progress. The exception is Ackley–Rosenbrock,
where decoupling hurts performance, likely because the objectives peak at disparate locations, so
single-objective measurements transfer poorly and bias the search toward one goal.
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Conclusion, Limitations, Perspectives
Universal black-box optimizationmodel

Extending to constrained, multi-source, preferential, cost-aware, etc…Does not require a
paradigm shift, mostly pre-training modification
Sky’s the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually…

The policy will quickly overfit

Does not scale yet

Highly black box method

Enough work avenues to fill several PhD theses
Scaling to high-dimensional settings, handling structured objects
Explainability
Pre-training dataset ⟺ Prior from a Bayesian perspective. Its composition is key.
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Two-steps training
1 Warm up backbone on prediction task by minimizing a negative log-likelihood over (𝒟 𝑐,𝒟 𝑝)

ℒ (𝑝)(𝜃) = −𝔼𝜏∼𝑝(𝜏)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑁𝑝 𝑑𝜏𝑦

𝑁𝑝

􏾜
𝑖=1

𝑑𝜏𝑦
􏾜
𝑘=1

log 𝑝􏿴𝑦𝑝𝑖,𝑘 | x
𝑝
𝑖 ,𝒟 𝑐􏿷

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

→ promotes accurate in-context regression and useful representations
2 Then, optimize the policy 𝜋𝜃(x∣𝑠) with trajectory objective

𝐽(𝜃) = 𝔼𝜏∼𝑝(𝜏)

⎡
⎢⎢⎢⎢⎢⎣ 𝔼𝜋𝜃􏿯

𝑇
􏾜
𝑡=1

𝛾𝑡−1𝑟𝑡􏿲

⎤
⎥⎥⎥⎥⎥⎦

→ aligns learning signal with improvements in Pareto quality alongside the prediction objective.
The overall objective combines both terms:

ℒ(𝜃) = ℒ (𝑝)(𝜃) + 𝜆rlℒ (rl)(𝜃), ℒ (rl)(𝜃) = −𝐽(𝜃),

ℒ (𝑝) andℒ (rl) calculated from two distinct forward passes with different datasets
Then summed for one single backward pass
Training on full trajectories directly rewards long-horizon improvements,
Amortization enables learning frommany tasks offline.
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Pre-training
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Algorithm S1 TAMO Pre-Training Algorithm

Require: task distribution p(ω), prediction context size Nc, prediction target size Np, query budget
T , number of burn-in iterations ε, number of total iterations num_total_iterations

1: for iteration i = 1, . . . , num_total_iterations do
2: ϑ Prediction task
3: Sample a task ω → p(ω)

4: Sample prediction batches Dc
= {(xc

i , y
c
i )}

Nc
i=1 and Dp

= {xp
i }

Np

i=1 from ω
5: Model predicts outcomes: p(ypi,k | xp

i ,Dc
), ↑xp

i ↓ Dp

6: if i ↔ ε then
7: Update model by minimizing the prediction loss L(p) (Equation 5)
8: else ϑ Policy learning task after burn-in phase
9: Sample a new task ω → p(ω)

10: Sample query set Dq

11: Initialize a history set Dh ↗ {(xh
0 , y

h
0 )},xh

0 → Dq

12: Set reference point r and calculate optimal Hypervolume: HV→ ↗ HV(P(X ) | r)
13: Initialize Pareto set P ↗ {yh0 }
14: for t = 1, . . . , T do
15: Select next query point: xt → ϖω(· | Dh, t, T )
16: yt ↗ Evaluate(xt, ω)
17: Update history set: Dh ↗ Dh ↘ {(xt, yt)}
18: Update Pareto set: P ↗ P ↘ {yt}
19: Compute reward: rt =

HV(P|r)
HV→

20: end for
21: Update model using the overall objective L (Equation 6)
22: end if
23: end for

Algorithm S2 TAMO Test-Time Algorithm

Require: Pre-trained TAMO model, new task ωtest, query budget T , initial history set Dh
0 := {xh, yh}

(with random samples if empty),
1: Dh ↗ Dh

0 ϑ Initialize the history set
2: P ↗ {yh} ϑ Initialize the Pareto set
3: for t = 1, . . . , T do
4: xt → ϖω(· | Dh, t, T ) ϑ Sample the next query location
5: yt ↗ Evaluate(xt, ωtest)
6: Dh ↗ Dh ↘ {(xt, yt)} ϑ Update the history set
7: P ↗ P ↘ {yt} ϑ Update the Pareto set with the new observation
8: end for
9: return Dh,P
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