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X = argmax f(x)
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@ Noinformation about f: gradients, convexity, invariances...
@ Canonlyevaluatey; = f(x;) + ¢
@ Collecting observations Z; = {(x;, )}l

Bayesian Optimization tackles this problem by learning a cheap-to-evaluate statistical surrogate of f
fO) ~ &P (g, (%), kg, (x, X))
Yields next sample to query x; selected sequentially based on an acquisition function

Xi.1 = argmax ag, (7))
xeZ’

Evaluate f(x;;1); append Zjy — Z} U {(x1.1,11)}; update surrogate p(fZ,1), repeat until satisfied.



Multi-objective optimization
We now observe a vector of objectives f(x) = [f1(X), ..., fm(x)] € RM
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Caveats

@ Performances highly dependent on surrogate and acquisition function pair

» Requires careful, expert selection of the ideal combination
» Will not transfer to the next problem

— “Learn” the language of optimization

@ Slow in high-throughput settings due to vanilla GP cubic complexity
— Do a huge offline pre-training step, reduce inference to a feedforward pass

© Most of the time myopic, focused on 1-step optimality
— Train over long optimization horizons using RL

@ Learning from previous campaigns not straightforward

» What if | previously optimized f;(x) alone, does that help in optimizing [ f;(x), f,(X)]?
» What if | previously optimized f(xy, ..., x;), does that help in optimizing f(xy, ..., X4, X4,1)?

— Use dimension-agnostic task embeddings
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Solution: Task-Agnostic Amortization @
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TAMO: architecture at a glance

Shared backbone. Each forward pass uses either a prediction batch (context, targets) or an
optimization batch (history, queries), traversing the same core components.
Optimization < Predicting the optimum.

............................................

@ Dimension-agnostic embedder: scalar—vector maps : Offine Policy learning i Deployment
producing tokens independent of input/output dim. | ((teencume J((_ it ) i 1 istory

@ Transformer encoder: aggregates variable-size I :
. . . ' Policy Head Prediction Head L '
histories/contexts into a compact summary. : Vo l

Transformer Encoder ' H
! .' Trained TAMO

© Task conditioning: a few learned tokens injected late Dimension-agnostic Embedder
to specialize the computation. : TAMO : l Dt b
t E 5

@ Two heads: a prediction head (density) and a policy

head (acquisition over query set). Next Query




Pretraining

Task distribution. Synthetic MOO tasks
T~ p(t)withf, : 2 ¢ RE - RY.
Heterogeneous d, dy =
dimension-agnostic policy.
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Dimension-agnostic embedder

@ Learnable maps (NNs)e,, e, : R — RR% applied element-wise:

E
—.&. e = 6,00 € R, e, =e,(y) € R
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@ After L transformer layers over [e,; e, ] we get contextualized

tokens €, €,. Draw per-dimension tokens p&j),pgc) € R% sampled

per batch from fixed pools of learned embeddings, then:
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Transformer encoder-decoder
Transformer layers splitinto B = B; + B,

@ B, history/context tokens self-attend = E" or E¢; queries/targets cross-attend to them = E4 or E7.
This is the only path for queries/targets to use past data.

@ B,: drop history/context; keep query/target tokens + task-specific tokens. An attention mask enforces that
query/target tokens only attend to task-specific tokens.

Task-specific tokens
@ Prediction: a prediction-task token and an output-index token pg().
@ Optimization: an optimization-task token, a time-budget token gime = MLPF((T—t)/T), and an

input-dimension token Z?fl pg).

Heads
Prediction head (per scalar target): Policy head (over queries):

{ies tie, Oieller = MLP(E]) a; = MLP,(E?)

et

K T _
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Inference

Algorithm S2 TAMO Test-Time Algorithm

Require: Pre-trained TAMO model, new task Tie, query budget 7', initial history set D} := {x" y"}

PRI NR 2N

(with random samples if empty),

D" «+ Db > Initialize the history set
P« {y"} > Initialize the Pareto set
fort=1,...,T do
x; ~ mo(- | D, t,T) > Sample the next query location
y: < Evaluate (X, Tiest)
D' « DM U {(x¢,y:)} > Update the history set
P —PU{y} > Update the Pareto set with the new observation
end for

return D", P




Pre-training dataset composition
@ Input dimensionality d, ~ % ({1,2}) and output dimensionality d, ~ % ({1, 2, 3}).

@ For output correlations, with p = 1/2, either:
» independent output dimensions are sampled

» drawn from a multi-task GP, with task covariance defined as k(i,j) = (CCT + diag(v))j, i,j € {1, -+, d,},

with Cis a low-rank matrix with rank r ~ ZZ ({1, --- ,dy}).

@ Data kernel along each output dimension:
» Equally sampled from RBF, Matérn-3/2, Matérn-5/2
» Standard deviation o ~ U([0.1,1.0])
» Lengthscale ¢ ~ .#'(2/3,0.5) truncated to [0.1,2.0].

@ The sampled function values y were centered and normalized to lie within [—1,1]dy.
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» drawn from a multi-task GP, with task covariance defined as k(i,j) = (CCT + diag(v));;,i,j € {1, -

with Cis a low-rank matrix with rank r ~ ZZ ({1, --- ,dy}).

@ Data kernel along each output dimension:
» Equally sampled from RBF, Matérn-3/2, Matérn-5/2
» Standard deviation o ~ U([0.1,1.0])
» Lengthscale ¢ ~ .#'(2/3,0.5) truncated to [0.1,2.0].

@ The sampled function values y were centered and normalized to lie within [—1,1]dy.

p=

Completely synthetic dataset! &



Samples from pre-training dataset, d, =1,d
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Samples from pre-training dataset, d, = 2,d, =3

Sample 1 Sample 2 Sample 4

Sample 3

Objective 1

.0 =25 0.0 25 5.0-50 -25 0.0

Objective 2

-5.0 -2.,5 0.0 25 5.0-50 -2.5 0.0 25 5.0-50-25 0.0 25

Objective 3

-5.0 2.5 0.2 5.0 -5.0 -=2.,5 0.0 25 5.0-5.0-25 00 25 5.0-50-25 0.0 25 5.0



Optimization run example, d, = 2,d
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Behind the scenes @

Dimension-Agnostic Embedder

Number of learnable positional tokens for @
Number of learnable positional tokens for y
Number of Transformer layers (L)
Dimension of e, and e

.
D w

@ Positional tokens define max
Transformer Encoder-Decoder

Difvension o TramsTormer o o dimensionality the model can handle

Point-wise feed-forward dimension of Transformer 256
Number of self-attention layers in Transformer (B)
Number of self-attention heads in Transformer 4
Heads
Number of hidden layers in policy head 3
Number of components in GMM head (K') 20
Number of hidden layers in MLP for each GMM 3
Training
Number of iterations 400000
Number of burn-in iterations 393500
Tnitial learning rate for warm-up iterations (Ir;) 1-1074
Tnitial Learning rate after warm-up (Iry) 4-10°
Learning rate scheduling Linearly increase from 0 to Iry in the first 5% of total iterations;
osine decay to 0 over total iterations
Size of prediction batch 32
Size of policy-learning batch 16
Weight on prediction loss (An) 1.0
discount factor () 1.0
Size of context set Ne ~ U[2,50 - d7]
Size of target set (V) 300 — N,
Size of query set (N,) 256
Optimization budget 7' 100
Noise level o 0.0
Number of initial observations during ini 1

Number of initial observations during test time 1

Noise level o 0.0

Size of query set (N,) 2048
imization budget (7)) 100
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Size of query set (N,) 2048

budget (T) 100
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@ For comparison: TabPFN uses L =12,
e, € R%? to handle d, = 50

@ = 1.1M parameters
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@ Positional tokens define max
dimensionality the model can handle

For comparison: TabPFN uses L. =12,
e, € R%? to handle d, = 50

=~ 1.1M parameters

Training time = 2 days

@ The model “learns” from 100-iterations
tasks =— outside is 00D!



Behind the scenes @

Dimension-Agnostic Embedder
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Size of policy-learning batch 16
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Number of initial observations during test time 1 . ) .
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Results
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Figure 3: Synthetic and real-world multi-objective benchmarks: simple regret (top) and cumu-
lative inference time (bottom) vs. oracle calls (mean =+ 95% ClIs over 30 runs). TAMO achieves
competitive regret while cutting proposal time by 50 x-1000 x.



Results - Single-objective BO
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Figure S1: Simple regret and inference time on synthetic examples for single-objective optimization.
Mean with 95% confidence intervals computed across 30 runs with random initial observations.

Again, TAMO matches state-of-the-art regret while dramatically reducing proposal time.



Results - Out of distribution examples

(a) OOD - Dimensionality (b) 00D - Decoupled Observations
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Figure 4: Out-of-distribution evaluations. (a) Dimensionality: simple regret (top) and cumulative
inference time (bottom) on tasks whose input/output dimensions are unseen at pretraining. (b)
Decoupled observations: regret vs. cumulative cost when, at step ¢, the optimizer may observe both
objectives at cost 2 (dark blue) or only one at cost 1 (cyan). Curves show means with 95% confidence
intervals over 30 runs with random initial observations. TAMO offers promising generalization
capabilities across unseen dimensionalities and decoupled feedback settings, delivering orders-
of-magnitude faster proposals while maintaining competitive regret.



Conclusion, Limitations, Perspectives
Universal black-box optimization model

@ Extending to constrained, multi-source, preferential, cost-aware, etc..Does not require a
paradigm shift, mostly pre-training modification

@ Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer
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Conclusion, Limitations, Perspectives
Universal black-box optimization model

@ Extending to constrained, multi-source, preferential, cost-aware, etc..Does not require a
paradigm shift, mostly pre-training modification

@ Sky's the limit: just make the model bigger, increase pretraining dataset size, train longer

Actually...
@ The policy will quickly overfit &
@ Does not scale yet @
@ Highly black box method ‘=

Enough work avenues to fill several PhD theses
@ Scaling to high-dimensional settings, handling structured objects
@ Explainability
@ Pre-training dataset < Prior from a Bayesian perspective. Its composition is key.



Appendix @



Two-steps training
@ Warm up backbone on prediction task by minimizing a negative log-likelihood over (¢, )

Ny, dy

1
ZP)(0) = “Eip) _Np i z; kElogp(yfk | x’i’, 90)
i=1 k=1

— promotes accurate in-context regression and useful representations
© Then, optimize the policy my(x | s) with trajectory objective

S

— aligns learning signal with improvements in Pareto quality alongside the prediction objective.

](6) = ]ET~p(T)

The overall objective combines both terms:
L(0) = ZVO) + \n2(O),  Z(O) =-](O),

o W and M calculated from two distinct forward passes with different datasets
@ Then summed for one single backward pass
@ Training on full trajectories directly rewards long-horizon improvements,

@ Amortization enables learning from many tasks offline. Y



Pre-training
Algorithm S1 TAMO Pre-Training Algorithm

Require: task distribution p(7), prediction context size N, prediction target size N, query budget
T, number of burn-in iterations 7, number of total iterations num_total_iterations
1: for iteration i = 1,..., num_total_iterations do
2 > Prediction task
3 Sample a task 7 ~ p(7)
4 Sample prediction batches D¢ = { (x5, y5)} 1 1 and DP = {mp} ? from T
5: Model predicts outcomes: p(y! . | ac” DC) V:c
6: if i < 7 then
7 Update model by minimizing the prediction loss £(®) (Equation 5)
8

: else > Policy learning task after burn-in phase
9: Sample a new task 7 ~ p(7)
10: Sample query set D¢
11: Initialize a history set D" « {(zf,yd)}, zh ~ D¢
12: Set reference point r and calculate optimal Hypervolume: HV* <~ HV(P(X) | r)
13: Initialize Pareto set P « {y5}
14: fort=1,...,Tdo
15: Select next query point: ; ~ mg(- | D", t,T)
16: y+ < Evaluate(x, 7)
17: Update history set: D" < D" U { (¢, y¢)}
18: Update Pareto set: P < P U {y;}
19: Compute reward: r, = HV(P‘ )
20: end for
21: Update model using the overall objective £ (Equation 6)
22: end if

23: end for

22



